IEEE CVPR2020 WORKSHOP ON FAIR, DATA EFFICIENT AND TRUSTED COMPUTER VISION

Interpreting Interpretations: Organizing Attribution Methods by Criteria

Zifan Wang, Piotr Mardziel, Anupam Datta, Matt Fredrikson Accountable System Lab (<u>https://fairlyaccountable.org/</u>) Carnegie Mellon University

Introduction

Attribution Map : Find the most important features in the input towards the prediction

 $\begin{array}{ll} \text{Input} & x = [x_0, x_1, \dots, x_{n-1}] \\ & \text{Attribution} \\ & \text{Map} & z = [z_0, z_1, \dots, z_{n-1}] \end{array}$

Attribution Maps may not agree with each other

model to predict "dog" class

Background

• Goal of this paper :

Evaluate different attribution methods with **numerical analysis** to answer which attribution method is better at what extent ?

• Recall:

Attribution Map : Find the most **important** features in the input towards the prediction

• Decompose the **importance**

Logical meaning

A necessary condition is one without which a statement is false A sufficient condition is one which can independently make a statement true

Necessity ← Importance → **Sufficiency**

Without therse features the model will lose more confidence than others With these features independently, the model will gain more confidence than others

Deep Neural Networks

Quantifying Necessity & Sufficiency

Criteria One: Ordering
Scores → Rank Order

Quantify the ordering: **Modify** features from top rank orders to the bottom. Modify \rightarrow Ablate (Necessity) Modify \rightarrow Add (Sufficiency)

Quantifying Necessity & Sufficiency

• Criteria One: Ordering

However, there is more than rank orders that attribution scores offer, and the actual values are overlooked.

Quantifying Necessity & Sufficiency

• Criteria Two: Proportionality

Motivations:

- Magnitude also captures information
- Interpret attribution scores linearly: given x_1, x_2 , if $z_1 = 2z_2$, then x_1 is expected to be twice important than x_2 is.

Ours:

Quantifying Necessity & Sufficiency

• Criteria Two: Proportionality

TPN measures Necessity

TPS measures Sufficiency

Area between the curves measures disproportionality.

Smaller area between the curves, better the Necessity/Sufficiency

Summary of Evaluation Metrics

Results

Evaluation performed with ImageNet and pretrainedVGG-16 model

Recommended Methods under Ordering Criteria:

- Necessity: DeepLIFT
- Sufficiency: GradCAM, LRP

Recommended Methods under Proportionality Criteria:

- Necessity: SmoothGrad, Saliency Map, Integrated Gradient
- Sufficiency: Guided Backpropagation, LRP, DeepLIFT

lower scores indicate the better performance

Interpret Interpretations How do we use necessity/sufficiency and ordering/proportionality to interpret different

How do we use necessity/sufficiency and ordering/proportionality to interpret different attribution maps.

Conclusions of experiments let us impart additional interpretation to these results

The lady **IS or IS NOT** used by the model to predict "dog" class

GradCAM highlights an area of sufficient features (Good S-Ord), the model can make correct prediction without the lady. However, among the sufficient features, higher scores do not strictly mean that those features are a lot more sufficient than features with lower scores (Poor TPS).

SmoothGrad highlights necessary features (Poor S-Ord and TPS), and attribution scores are proportional to actual necessity (Good TPN). Point clouds around the lady are less intensive compared to the dog; therefore, the lady is less necessary compared to the dog in the prediction towards "dog" class.

IEEE CVPR2020 WORKSHOP ON FAIR, DATA EFFICIENT AND TRUSTED COMPUTER VISION

Thanks for watching our presentation Contact us: zifan.wang@sv.cmu.edu

Zifan Wang, Piotr Mardziel, Anupam Datta, Matt Fredrikson Accountable System Lab (<u>https://fairlyaccountable.org/</u>) Carnegie Mellon University