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Abstract

Deep Neural Networks (DNNs) have recently demonstrated remarkable performance that is comparable to

humans. However, these models pose a challenge when it comes to answering whether their behaviors,

ethical values, and morality always align with humans’ interests. This issue is known as (mis)alignment of

intelligent systems. One basic requirement for deep classifiers to be considered aligned is that their output

is always semantically equivalent to that of a human, who possesses the necessary knowledge and tools to

solve the problem at hand. Unfortunately, verifying the alignment between models and humans on outputs

is often not feasible, as it would be impractical to test every sample from the distribution.

A lack of output alignment of DNNs has been evidenced by their vulnerability to adversarial noise,

which are unlikely to affect a human’s response. This weakness originates from the fact that important

features used by the model may not be semantically meaningful from a human perspective, an issue which

we will term as feature (mis)alignment in vision tasks. Being (perceptually) aligned with humans on useful

features is necessary to preserve output alignment. Thus, the goal of this thesis is to evaluate and enhance

the feature alignment of deep vision classifiers to promote output alignment.

To evaluate feature alignment, we introduce locality, a metric based on explainability tools that guarantee

faithful returns of important features contributing towards the models’ outputs. Consequently, the first

contribution of the thesis shows that modern architectures, e.g., Vision Transformers (ViTs), the state-

of-the-art classifiers on many tasks, are misaligned in features. Our second contribution, on the other

hand, shows that improved adversarial robustness leads to improved locality. To be specific, we find that

a robust model has better locality than any non-robust model and the locality of a model increases as it

becomes more robust. Inspired by this finding, our third contribution is to improve robustness with a novel

technique, TrH regularization, based on a direct minimization of PAC-Bayesian generalization bound for

robustness. Our technique provides the new state-of-the-art robustness for ViTs. However, as robustness is

often measured by running existing attacks, the guarantee is only empirical and may fail against adaptive

attacks. The last contribution of this thesis introduces GloRo Nets, which entail a built-in formal robustness

verification layer based on the global Lipschitz constant of the model. Unlike a probabilistic guarantee

provided by Randomized Smoothing, GloRo Nets have a deterministic guarantee and significantly improve

the state-of-the-art provable robustness under ℓ2-norm-bounded threats.

Robustness is necessary for feature alignment but is probably not sufficient, as there are many other

unspecified requirements that would result in misalignment. In conclusion, the thesis discusses the issue of

under-specification in classification and its connection to alignment, together with potential remedies for

addressing the issue as another step towards feature alignment in deep learning.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have successfully revolutionised the ways how humans interact with the

natural world. By effectively learning complex representations from vast amounts of data, DNNs have

demonstrates human-level performance over thousands of vision and language tasks. However, despite

their impressive learning capabilities, the neural reasoning behind their decision-making processes still

remains opaque to humans. As a result, analyzing their behavior and verifying their performance can be a

challenging task. The lack of DNN transparency places a crucial question to us,

Is the purpose put into the nueral network the purpose that we really desire?

—- Norbert Wiener (1960)

This is the concern raised by Norbert Wiener, pioneer mathematician in theorizing Artificial Intelligence

(AI), in 1960s. The question above opens up research fields that is often referred to as AI alignment. Namely,

an aligned AI system advances the intended objective; a misaligned AI system is competent at advancing

some objective, but not the intended one (Russell, 2010). The research of alignment includes but not limits

to align the model’s ethical value, morality, and desired behavior with humans’ interests and finally benefit

us (Gab; Brundage et al., 2020; Christiano et al., 2017; Muggleton & Chater, 2021; Ouyang et al., 2022).

For vision tasks interested in this thesis, we dive deep into a basic building block for other higher-level

requirements of alignment – that is, for deep classifiers to be considered aligned their outputs should be

semantically equivalent to those of a human, who has the necessary knowledge and tools to solve the

problem at hand. Unfortunately, verifying the alignment between models and humans on outputs, which

we term as output alignment, is often not feasible, as it would be impractical to test every sample from the

data distribution.

1
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Notice that the term alignment or human alignment can also refer to the social impacts of artificial

intelligence systems, which require AI to generate content aligning with human values and intentions.

As AI systems become more capable, there’s a growing concern about ensuring they behave in ways that

are beneficial, safe, and in line with human intentions. Reinforcement Learning with Human Feedback

(RLHF) (Brown et al., 2020; Christiano et al., 2017) and constitutional AI (Bai et al., 2022), for example, are

popular means to realize human alignment for language models. However, when the term output alignment

is used in this thesis, we particularly refer to models that agree with humans on the outputs and do not

require such outputs to be ethical.

Various researchers have demonstrated a lack of output alignment in deep classifiers, as evidenced by its

vulnerability to adversarial noise in the input, which is unlikely to affect a human’s response. For example,

several studies have shown that models with seemingly good performance on the ImageNet (Deng et al.,

2009) test set can barely be accurate on well-crafted ones (Carlini & Wagner, 2017c; Croce & Hein, 2020b;

Goodfellow et al., 2015b; Madry et al., 2018a) and natural ones (Hendrycks et al., 2021), where humans

do not find them confusing and give consistent responses compared to benign inputs. For safety-critical

applications, what’s even worse than knowing that the deployed model lacks output alignment and may

fail is the uncertainty about when the catastrophic failure will occur.

One reason to blame for this weakness of DNN is that important features used by the model may not be

semantically meaningful from a human perspective, an issue which we will term as feature (mis)alignment

in vision tasks. Consider an example shown in Figure 1.1, where a human teaches a DNN to associate

an image of cat to a label cat. Upon correctly learning the mapping from the training input to its label,

does the human know which logic the model learns from the data? That is, is the correct classification

based on cat-relevant pixels, e.g. face and eyes, which a human would use for describing cats, or those

irrelevant pixels on the background? Put it simple, it is necessary for a model’s output to align with a

human’s response to have the important features used by the model to align with truly important ones

from a human’s perception.

The aim of this thesis is to assess feature alignment of deep models and develop guides and tools to build

well-aligned models. The beginning of this thesis, therefore, focuses on the following question,

How does one assess if a DNN uses truly useful features that humans would use to classify the same image?

First, to address this problem, we rely on a metric that leverages feature attribution, a family of explainability

techniques with a faithful guarantee to return important features that contribute to model’s decision. To

efficiently check for whether these features are semantically meaningful to humans, we leverage bounding

boxes in vision datasets, e.g. ImageNet (Deng et al., 2009). By comparing attributions with bounding
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Figure 1.1: A human teaches a DNN to associate an image of cat to the label cat but the human is unsure
about which way the classification is run inside the model: using cat-relevant pixels (logic A) or using
cat-irrelevant pixels (logic B).

boxes, we introduce locality, a quantitative metric for measuring the degree of feature alignment. Second,

our empirical evaluations on locality show that the often used metric, i.e. classification accuracy, is not

a good indicator for locality, while adversarially robust models preserve higher locality than the standard

(i.e. non-robust) ones. This connection we find between robustness and locality motivates our third

contribution, which contains a set of techniques to improve model robustness. Finally, we highlight a

limitation of robustness for realizing well-aligned models. Namely, for images with no truly useful features,

a human-like behavior is to abstain from classification. Our contribution here is a new type of neural

network that opts to abstain for unseen classes, moving another step further towards feature alignment.

The presentation of the thesis is organized as follows. Section 1.1 provides an overview of the way

we define and measure locality using feature attributions. We find accurate models do not always have

high locality. Chapter 2 expands the content in Section 1.1 with greater details. Section 1.2 summarizes

the concept of adversarial robustness and its connection to model locality, with more details in Chapter 3.

Section 1.3/1.4 focuses on a novel technique on improving the empirical/provable robustness and details

to follow in Chapter 4/5. Lastly, Section 1.5 highlights that a limitation of robustness, i.e. robust models

can classify white noise into a meaningful class (e.g. “dog") because conventional networks do not abstain

for invalid inputs. The remedy proposed here is to a novel architecture that is self-explainable and opts to

abstain by construction. We will cover greater details in Chapter 6.

1.1 Assessing feature alignment with Locality

The objective of this thesis is to evaluate and improve the alignment between the outputs generated by

vision models and those produced by humans on visual classification tasks. Exhausting all samples from

an unknown true distribution of data is not a feasible option for practical reasons. Thus, we instead explore
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a condition essential for models to consistently agree with human outputs. This condition, which we refer

to as feature alignment, entails models relying on (perceptually1) relevant features that humans, provided

with the necessary knowledge and appropriate tools, would similarly employ. It should be noted that

while feature alignment alone may be insufficient to achieve output alignment due to the need for neural

reasoning steps to mirror the thought processes of humans. However, feature alignment alone is likely

to be necessary to output alignment in vision models as the model without using similar features does

not mimic humans for sure. As a result, feature alignment is still useful as a way to flag potential output

misalignment on unseen data. For example, Figure 1.1 illustrates how a network with logic B lacks feature

alignment with humans, given that the presence of a cat is not logically associated with the background of

a blanket or couch. Therefore, logic B is unlikely to produce an output-aligned model and is likely to fail

when presented with unseen images of cats with different backgrounds.

The initial step in assessing feature alignment involves identifying input features that significantly

influence the model’s outcome. In machine learning explainability, this is commonly referred to as feature

attribution, a technique that computes a score for each input feature as its importance to the model’s

output. Care must be taken that the significance of a feature can vary substantially depending on the

function segment being examined. Specifically, a function’s output can display monotonic growth as a

feature increases within a small neighborhood, but conversely, it may decline in a larger one. Therefore,

to determine the importance of a feature, one must simultaneously specify the neighborhood of interest.

In this thesis, we are interested in three types of neighborhood, i.e. (1) point-wise; (2) global; and (3)

local neighborhoods, with the objective of identifying features that are point-wise important, globally

important, and locally important and which contribute to the model’s output. Among existing feature

attributions (Binder et al., 2016; BOHNENBLUST et al., 1952; Erion et al., 2021; Fong & Vedaldi, 2017;

Ghalebikesabi et al., 2021; Leino et al., 2018; Lundberg & Lee, 2017; Pan et al., 2021; Petsiuk et al., 2018;

Ribeiro et al., 2016; Selvaraju et al., 2019; Shrikumar et al., 2017; Simonyan et al., 2013; Smilkov et al.,

2017; Sundararajan et al., 2017; Wang et al., 2020a, 2022), we choose Saliency Map (SM) (Simonyan et al.,

2013) for the point-wise neighborhood and Integrated Gradient (IG) (Sundararajan et al., 2017) for the

global neighborhood, provided that they are axiomatically justified to return scores that are faithful to

the underlying model. For a local neighborhood, we include Boundary-based Integrated Gradient (BIG)

from our recent work (Wang et al., 2022) for the same reason of faithfulness. To summarize, we find the

important features that contribute most to the model’s output with feature attributions, i.e. SM, IG and

BIG, to complete our first step for evaluating feature alignment.

Given tools to discover the model’s use of features, for the second step, we intend to evaluate whether

1as we are focusing on vision models in this thesis.
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these highlighted features are truly useful. That is, "do important features from the model’s perspective perceptibly

meaningful to human experts as well ?" Typically, user studies involving a group of human volunteers are

conducted to address such inquiries. In this thesis, we do not conduct such a survey because of a set of

potential issues that may undercut the value of human feedback. More importantly, the only information

that is relevant to our evaluation is a set of features that humans find perceptibly meaningful. This

information is already present by human-labeled bounding boxes in commonly used vision datasets such

as ImageNet (Deng et al., 2009). A bounding box typically comprises a vector of four elements denoting the

coordinates of two diagonal vertices of a rectangle in the image, enabling the localization of the object. For

classification, the model is expected to associate the output label with the object identified by the bounding

box. Thus, the bounding box is an optimal choice in our use case to capture perceptibly meaningful features

from humans’ perspective.

We propose a set of locality metrics, akin to the conventional precision, recall, and F1-score used in

binary classification, to assess the alignment between the model’s important features identified through

feature attribution and the perceptibly meaningful features identified through the bounding box. Using our

locality evaluations, we find that despite the increasing test accuracy from 58.1% with a SqueezeNet (Iandola

et al., 2016) to over 80% with a Vision Transformer (ViTs) (Dosovitskiy et al., 2020), their locality scores

with SM, IG, and BIG are almost identical, respectively. In particular, the F1 locality scores are close to 0.5,

indicating a weak alignment between feature attributions and the bounding box. This phenomenon is not

surprising if visualizing feature attributions by overlaying importance scores over the image – attributions

on the most accurate model are not very different from that on the worst model and they are both far from

semantically meaningful to us.

Put together, with locality scores, the first conclusion drawn from this thesis is that improved test is not

a good indicator of improved feature alignment. The findings we have in turn account for the well-known

vulnerability of deep models against tiny and imperceptible noise (Goodfellow et al., 2015c) (as illustrated

in Figure 1.2) – the real focus of the model is never the perceptibly meaningful ones so imperceptible and

irrelevant noise can fool a model without getting caught by humans. For greater details, please refer to

Chapter 2.

1.2 Better Locality by Improved Robustness

As evident by our experiments in Chapter 2, improving test accuracy is far from enough to improve the

locality of the model. In this section, we show that adversarial robustness effectively improves locality, leading

to a better-aligned model.
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Figure 1.2: The well-known vulnerability of deep model against imperceptible noise, which is very unlikely
to change a human’s response to the image.

Figure 1.2 demonstrates how our human perception and a deep neural network differ in their sensitivity

to perturbations. Despite the salt-and-pepper noise added to the original image, our brain can still recognize

the cat, whereas the neural network changes its prediction accordingly, revealing its sensitivity to tiny

noise. This sensitivity of a model to adversarial noise is known as adversarial robustness. Lack of adversarial

robustness is indicative of a model’s lack of feature alignment with humans. Hence, we pose the research

question: Can improved adversarial robustness lead to improved locality?

To answer our question, we repeat the locality experiment for models that are trained with robustness-

aware losses. Interestingly, the robust model, despite that it comes with a slightly lower test accuracy

compared to the best ViT model we have in Section 1.1 (or Chapter 2), demonstrates a significant improve-

ment on locality with all three attributions, i.e. SM, IG and BIG. Visualizations of these attributions on

robust models also look much semantically meaningful and close to features in the bounding boxes. Put

together, the second contribution of thesis is to reveal that improved robustness effectively enhances the locality

of the underlying model.

On the benefit of robustness, we also show that gradient-based attributions become more similar to the

normal vectors of the nearest/nearby decision boundaries, i.e. the most discriminating features that the

model uses to make the decision at the input. We show a set of empirical results to validate this observation

and derive a set of analytical results for justifying our findings.

The details discussed in this section are elaborated on in Chapter 3. The effectiveness of adversarial

robustness in promoting locality and feature alignment motivates us to explore approaches for building

more robust models in following chapters.
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1.3 Training Robust Models Against Empirical Attacks

In order to build models that are robust against imperceptible perturbations to the inputs, we first consider

to use small-norm-bounded perturbations to translate such imperceptibility. Formally, we consider an

adversary with a budget of ϵ to inject any kind of noise to the input x but the perturbed input x′ must be

within the ϵ-ball of x w.r.t norm, ∥ · ∥p, to make sure the perturbation is imperceptible to humans (otherwise

we do not wish to make the model’ predictions robust because humans may have already changed the

responses to the perturbed input).

To date, there are a large body of attack methods designed for breaking deep models (Croce & Hein,

2020b; Goodfellow et al., 2015d; Madry et al., 2017; Nicolae et al., 2019). The common idea to defend

against one of all of these attacks is to augment the training data with adversarial examples during training,

which often results in a min-max optimization (Goodfellow et al., 2015d; Madry et al., 2017; Wong et al.,

2020; Zhang et al., 2019c). That is, the inner-maximization tries to find a "worst" example that results in

a great loss on classification with an attack and the outer-minimization hereby drives the weights of the

model to minimize the loss on that "worst" example. Two well-known approaches follow this scheme are

Adversarial Training (AT, Madry et al. (2017)) and TRADES (Zhang et al., 2019c).

Recently, Rice et al. (2020) observe a robust overfitting phenomenon, referred to as the robust generalization

gap, in which a robustly-trained classifier shows much higher accuracy on adversarial examples from

the training set, compared to lower accuracy on the test set. Indeed, several technical approaches have

been developed that could alleviate this overfitting phenomenon, including ℓ2 weight regularization, early

stopping (Rice et al., 2020), label smoothing, data augmentation (Yun et al., 2019; Zhang et al., 2017), using

synthetic data (Gowal et al., 2021) and etc.

According to learning theory, the phenomenon of overfitting can be characterized by a PAC-Bayesian

bound (Alquier, 2021; Catoni, 2004; Germain et al., 2009; McAllester, 1999; Shawe-Taylor & Williamson,

1997) which upper-bounds the expected performance of a random classifier over the underlying data

distribution by its performance on a finite set of training points plus some additional terms. Although

several prior works (Gowal et al., 2021; Izmailov et al., 2018; Jin et al., 2022; Wu et al., 2020) have built

upon insights from the PAC-Bayesian bound, none attempted to directly minimize the upper bound, likely

due to the fact that the minimization of their forms of the PAC-Bayesian bound do not have an analytical

solution.

In Chapter 4, we rely on a different form of the PAC-Bayesian bound (Germain et al., 2009), which can be

readily optimized using a Gibbs distribution (Germain et al., 2016a) with which we derive a second-order

upper bound over the robust test loss. Interestingly, the resulting bound consists of a regularization term
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Figure 1.3: We propose Trace of Hessian (TrH) regularization for training adversarially robust models. In
addition to an ordinary robust loss (e.g., TRADES (Zhang et al., 2019b)), we regularize the TrH of the loss
with respect to the weights of the top layer to encourage flatness. The training objective is the result of
direct PAC-Bayesian bound minimization in Chapter 4.

that involves Trace of Hessian (TrH) of the network weights, a well-known measure of the loss-surface

flatness. For practical reasons, we limit TrH regularization to the top layer of the network only because

computing a Hessian matrix and its trace for the entire network is too costly. We further derive the

analytical expression of the top-layer TrH and show both theoretically and empirically that top-layer TrH

regularization has a similar effect as regularizing the entire network. The resulting TrH regularization

(illustrated in Figure 1.3) is less expensive and more memory efficient compared to other competitive

methods (Gowal et al., 2021; Izmailov et al., 2018; Jin et al., 2022; Wu et al., 2020).

1.4 Training Robust Models With Formal Certification

One limitation of TrH regularization, together with other empirical defenses, against adversarial pertur-

bations is that the robustness guarantee is only empirical w.r.t the attack used at validation time. That is,

with attacks adaptive to these defenses, e.g. CW Nicolae et al. (2019), these defenses can still be vulnerable

in the future. Thus, Chapter 5 hereby focuses on training methods that produce models whose robust

predictions can be efficiently certified against adversarial perturbations. That is, the decision boundary in

the input space is certified to be ϵ-away from the inputs as illustrated in Figure 5.

Over the last few years, a wide body of literature addressing robustness certification has emerged (Cohen

et al., 2019a; Croce et al., 2019; Fromherz et al., 2021b; Huang et al., 2021b; Jordan et al., 2019b; Lee et al.,

2020b; Leino et al., 2021d; Li et al., 2019a,b; Singla et al., 2022; Tjeng et al., 2019a; Trockman & Kolter, 2021;

Wong & Kolter, 2018a). To date, the methods that achieve by far the best certified performance are derived
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Figure 1.4: Plot of a certifiably robust decision boundary powered by our approach GloRo Nets. The
thickness of ⊥ stripe is at least 2ϵ so the model is certifiably ϵ-locally robust for both dog and cat. See
Chapter 5 for the formal robust guarantee and details of GloRo Nets.

from randomized smoothing (Cohen et al., 2019a); however, this provides only a probabilistic guarantee—which

may generate a false positive claim around 0.1% of the time (Cohen et al., 2019a)—and requires significant

overhead for both evaluation and certification. By contrast, deterministic certification may be preferred in

safety-critical applications, e.g., malware detection and autonomous driving.

Because of the highly non-linear boundaries learned by a neural network, deterministically certifying the

robustness of its predictions usually requires specialized training procedures that regularize the network for

efficient certification, as post-hoc certification is either too expensive (Katz et al., 2017; Sinha et al., 2018) or

too imprecise (Fromherz et al., 2021b), particularly as the scale of the model being certified is increased. The

most promising such approaches—in terms of both certified accuracy and efficiency—perform certification

using Lipschitz bounds, meaning that the learning procedure must impose Lipschitz constraints on the

layers during training, either through regularization (Leino et al., 2021d) or orthogonalization (Trockman &

Kolter, 2021).

In Chapter 5, we propose a new type of neural network, Globally Robust (GloRo) Nets, with robustness

certification by construction based on a global Lipschitz constant of the model (Figure ??5Figure 5r approach

to certification that shows promise in this regard uses Lipschitz bounds to efficiently calculate the robustness

region around a point (Weng et al., 2018a; Zhang et al., 2018). In particular, when global bounds are used

with GloRo Nets, it is possible to implement the bound computation as a neural network of comparable

size to the original, making online certification nearly as efficient as inference. Unfortunately, current

training methods do not produce models with sufficiently small global bounds for this to succeed Weng

et al. (2018a). To address this issue, we introduce GloRo-CE, GloRo-TRADES and GloRo-EMMA, a set of

losses that are both efficient in the run-time and memory and effective in obtaining a tight global bound
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Figure 1.5: Plots of the insufficiency of robustness for realizing feature alignment. We add different noises
to an image of anchor to make a robust model, i.e. GloRo Nets introduced in Chapter 5, to output robust
predictions, which are unlikely to align with humans’ outputs.

for certification purpose.

Focusing on the case of deterministic guarantees against ℓ2-bounded perturbations, we show that this

approach yields state-of-the-art verified-robust accuracy (VRA), while imposing little overhead during

training and none during certification. For example, we find that we can achieve 29.2% VRA with a

robustness radius of ϵ = 0.141 on Tiny-ImageNet, surpassing all prior approaches by multiple percentage

points. We are also the first to provide a deterministic robust guarantee on ImageNet, with a 14.2% VRA

at radius ϵ = 1.0. More importantly, to the best of our knowledge, this is the first time the deterministic

robustness guarantee scales up to ImageNet, demonstrating the promise, facilitated by our architecture, of

obtaining certifiably robust models in real-world applications.

1.5 Conclusions, Limitations and Future Work

In Chapter 6, we first discuss conclusions from our results in previous chapters. We conclude that to

ensure vision models align with humans on feature use we need them to be resistant to imperceptible

and adversarial noises, i.e. adversarial robustness. For that purpose, we introduce novel techniques and

state-of-the-art performance.

Although robustness is essential for improving feature alignment, it is probably not sufficient on its

own. Consider an example shown in Figure 1.5 where we take a robust model, i.e. a GloRo Net introduced

in Chapter 5, trained on MNIST dataset and input a few perturbed images based on an image of anchor.

These images are out of the distribution of digits 0 to 9 that the model is trained with; however, the model
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gives robust predictions on these images as 4, 6 and 9. From the author’s perspective, these images are

probably just noises even the last image is probably similar to a digit 0 (but the robust model thinks it is 9).

It is not convincing to claim that the robust model shown in Figure 1.5 is a well-aligned model. The

cause to the seemingly paradox between Figure 1.5 and our advocate of robustness from previous chapters

is that robustness is necessary for the model to align on in-distribution images in features used by humans;

however, for perturbed anchor images in Figure 1.5, they are out of the distribution that the model is trained

with and they are not covered by the notion of local robustness, which GloRo Nets can certify. Geometrically,

this is because GloRo Nets do not have a closed decision boundary so it fails to reject (i.e. by predicting ⊥)

for an out-of-distribution input.

In the rest part of Chapter 6, we dive into a potential solution to address the issue of a non-closing

decision boundary in classification — selective classification. We consider this as a future direction for the

work done in this thesis. We propose a novel idea of Centroid Nets, which is designed to reject two types

of out-of-distribution points: the adversarial examples and the examples labeled with classes the model has

not seen before. For a proof of concept, we provide theoretical results together with preliminary empirical

results on Centroid Nets, showing how decision boundaries are closed compared to GloRo Nets.



Chapter 2

Assessing Feature Alignment with Locality

Feature Alignment is an essential property to realizing models that always align with humans on classification

outputs, which is informally introduced in Chapter 2 as deep models must leverage features that are

important to humans has been discussed. In this chapter, we provide a more concrete definition for feature

alignment in Section 2.1, in addition to practical tools, i.e. feature attributions, and a metric, i.e. locality,

that help in the practical assessment of feature alignment in Section 2.2 and 2.4.

2.1 Feature Alignment

A deep neural network is often abstracted as a function f : Rd → Rm where d, m are the dimensions of the

input and output, respectively. This thesis particularly focuses on using deep neural networks to classify an

input x into one of the m classes and we use [m] to denote a closed set of integers between 0 and m− 1. In

this case, the j-th output neuron of f (x) is referred to as logit score for class j, which can be normalized and

projected by a softmax function into the probability space and interpreted as the conditional probability of

the input belonging to class j, i.e. Pr(j|x). In classification, we usually regard the class with the highest

logit score as the network’s prediction F(x). Namely,

F(x) = arg max
j∈[m]

f j(x).

Here, we use the upper and lower cases to distinguish between the network’s discrete integer prediction

and continuous logit vector.

The goal of the learning problem is usually to find the mapping from one space to another, which in

classification is a mapping from the feature space of the input to a space of probabilities or labels. In the

set-up of supervised learning we consider in this thesis, we are given a set of pairs of inputs and labels, e.g.

Dn = {(x, y)}n
i=1, sampled from a true data distribution such that (x, y) ∼ D. Suppose f ∗ : Rd → Rm is

12
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the true and unknown mapping that we desire, so f is what we have learned from Dn with some particular

algorithm by minimizing the empirical risk.

In vision tasks, f ∗ abstracts the reasoning processes inherent to the human brain. This includes a

sequence of steps where light, distance, and temporal information are converted into bio-electronic signals,

combined, and then analyzed in our unique and intricate ways. While the inner workings of f ∗ remain

enigmatic to us (arguably far more so than the neural net f ), it suffices for our purposes to discern the

significance of visual information in each image pixel based on its influence to f ∗’s output.

A large body of works has focused on measuring the influence of input features of a specific set of

functions, e.g. linear models, where game theory, causality and statistical importance play a major role for

analyzing more general ones. In this thesis, we identify important pixels as those to which f ∗’s output

is notably sensitive. To describe this sensitivity, we introduce perturbations to the input and define a

neighborhood based on these perturbations. The degree of sensitivity is then quantified through input-

output correlations. We present Definition 1 to gauge the features that are truly significant to humans via

f ∗. Substituting f ∗ with f gives measures of feature importance for f .

Definition 1 (ρ-Important Feature) Suppose f ∗ : Rd → Rm is the groundtruth mapping from the input x to the

label y for any (x, y) ∼ D in the data distribution. For the j-th input feature in x denoted as xj, and a distribution

N , xj is said to be ρ-important w.r.t N and y if

Eϵ∼N [(xj + ϵ) · f ∗y (x1, · · · , xj + ϵ, · · · , xd)] ≥ ρ,

where f ∗y is the y-th output of f ∗.

The metric given in Definition 1 quantifies the correlation between a feature xj and the function output

f ∗ (or f ) under perturbations governed by distribution N . Features that exhibit strong correlations with

the output are deemed important. The pivotal role of N is to delineate the specific subset of the input

space — the targeted neighborhood — wherein the importance of xj is being assessed. For instance, if N

represents a narrow distribution centered at zero, such as a Delta distribution, ρ-importance corresponds

to the function’s hyper-local sensitivity towards the feature, akin to the concept of influence discussed

by Ancona et al. (2018a); Leino et al. (2018) (highlighted by the green neighborhood in Figure 2.1). In the

magnified view on the left, one could deduce that alterations to xj within the green zone do not affect

the output of the function, implying that xj does not hold significance for f . Conversely, with a broader N

distribution, the ρ-importance reflects either a local characteristic (illustrated by the yellow area) or a more

global metric (as shown by the blue area) in Figure 2.1. Here, the yellow and blue arrows respectively

indicate the positive and negative significance of xj to the function. Therefore, the salient observation from
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Figure 2.1: The importance of a feature xj to the output of a function f (x) depends on the neighborhood
of interest. Arrows in different colors show the change of output with xj increases in the corresponding
regions in each color, respectively.

Figure 2.1 is imperative to clearly define the distribution of interest (or a reference neighborhood) to ensure

unambiguous and consistent evaluations of input feature importance.

feature alignment. Evaluating if a significant feature xj is pertinent to both the true mapping f ∗ and

the learned function f enables us to discern the feature alignment between f and f ∗. Nonetheless, it is

essential to first ensure that the output scales of f and f ∗ are calibrated to make their importance metrics

comparable. Such calibration can be achieved by transitioning from the logit output space to the probability

output space, or through alternative calibration methodologies. For the purpose of this discussion, we

presume that both f and f ∗ have undergone appropriate calibration. We here introduce feature alignment in

Definition 2.

Definition 2 ((ρ, λ)-feature alignment) Given a data distribution D, a network f : Rd → Rm, a noise distri-

bution N , a class of interest y, and a convex function similarity(·, ·) : Rd ×Rd → [0, 1], define I f (x) as a vector

where

Iρ
f (x)j = xj · I[xj is ρ-important (w.r.t N and y) to f ],

where I is an identity function and Iρ
f ∗(x) as a vector where

Iρ
f ∗(x)j = xj · I[xj is ρ-important (w.r.t N and y) to f ∗].

Thus, f is said to be (ρ, λ)-aligned with f ∗ if

Ex∼D
[
similarity(Iρ

f ∗(x), Iρ
f (x))

]
≥ λ. (2.1)
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Objective Math Definition Empirical Approach

Important Features to DNNs ρ-importance (Definition 1) Feature Attribution (Section 2.2)
Important Features to Humans ρ-importance (Definition 1) Bounding Box (Section 2.3)
feature alignment (ρ, λ)-feature alignment (Definition 2) Locality (Section 2.4)

Table 2.1: An overview of relations between our definitions on feature alignment and empirical ways to
measure them in Section 2.2, 2.3 and 2.4.

Definition 2 is a sound but perhaps practically infeasible to measure because (1) computing Iρ
f (x)j

needs to visit every point in the perturbation neighborhood, which can be empirically approximated but

expensive to compute; (2) solving the expectation of Equation 2.1 is as hard as directly checking for output

similarity between f and f ∗, i.e. output alignment; and (3) quantities related to f ∗ are intractable because

f ∗ is unknown to us. Throughout Section 2.2 to Section 2.4, we discuss practical solutions to analyze

(ρ, λ)-feature alignment using explainability tools, object bounding boxes and a new set of metrics which we

will later term as locality scores. We also summarize this overview in Table 2.1.

2.2 Feature Attribution

Localizing Iρ
f (x), i.e. the ρ-important features of x that contribute to the prediction f (x), is the first step

towards evaluating perceptional alignment. Despite the fact that one can iterate over samples from the

noise distribution N to directly compute Iρ
f (x) in Definition 1, it is not clear how many samples are enough

for us to represent the distribution of interest well. As a result, Definition 1 may bring a great computation

overhead, provided that we must iterate over noise sampled from N for each input dimension and repeat

the same procedure for every input.

Alleviating the computation overhead while capturing the important features used by the model is in

line with the focus of deep learning explainability, which includes a family of techniques to help humans

understand and assess the behavior of deep nets. Among explanation techniques, feature attributions assign

a scalar value for each input feature for its importance towards a quantity of interest, e.g. the output logit

of the top class (Binder et al., 2016; BOHNENBLUST et al., 1952; Erion et al., 2021; Fong & Vedaldi, 2017;

Ghalebikesabi et al., 2021; Leino et al., 2018; Lundberg & Lee, 2017; Pan et al., 2021; Petsiuk et al., 2018;

Ribeiro et al., 2016; Selvaraju et al., 2019; Shrikumar et al., 2017; Simonyan et al., 2013; Smilkov et al., 2017;

Sundararajan et al., 2017; Wang et al., 2020a, 2022) (we give a brief review of other explainability tools and

examples in Appendix A). The return of feature attributions thus fits our purpose of localizing Iρ
f (x) in the

input. We provide a general definition of an attribution method in Definition 3.

Definition 3 (Feature Attribution) For a network f : Rd → Rm, f ∈ F , feature attribution is a mapping
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A : Rd × [m]×F → Rd that takes an input x, the network f to explain and a class of interest y and returns a vector

of the input’s shape. The j-th element of A(x, f , y)j indicates the importance of xj.

Throughout the thesis, when f and y are clear from the context, we simply write an attribution as A(x).

Notice that the distribution of interest to specify the neighborhood for feature importance is often part of

the construction of A(x), where a reference neighborhood could be chosen for well-justified reasons or just

being empirically feasible. One example of A(x) with an axiomatically justified distribution of interest is

Shapely Value (BOHNENBLUST et al., 1952), a construct from cooperative game theory. Despite the fact

that Shapely Value does not scale up well to high-dimensional input and deep models, it is the unique

approach that satisfies a set of axioms considered “golden rules" for an explanation.

In this thesis, we are particularly interested in gradient-based attributions that are axiomatically justified

to be faithful to the model w.r.t a neighborhood of interest. Compared to Shapley Values, gradient-based

attributions are much more resource-friendly and often implementation-invariant as long as the underlying

model is differentiable. In Section 2.2.1, we discuss three popular gradient-based attributions, followed by

Section 2.2.2 where we propose a new type of gradient-based attribution that better captures the network’s

decision in a local neighborhood. In Section 2.2.3, we justify why the selected attributions are faithful

enough to accurately capture I f (x), the important features used by the model, to realize the purpose of

assessing the alignment.

2.2.1 Saliency Map and Integrated Gradient

Saliency Map (Simonyan et al., 2013) (Definition 4) is the weight of the first-order approximation to the

network’s output at the input of interest. Because the weight AS(x) is often considered as the sensitivity

of f to the input features, e.g. how much the output would change if a feature is modified with a

tiny perturbation, the product of the Saliency Map and the value of the feature, i.e. AS(x)j · xj, is often

considered as the contribution of xj under the Saliency measurement. In the rest of the thesis, we will use

Input × Grad if we particularly refer to AS(x)j · xj instead of the gradient itself.

Definition 4 (Saliency Map (SM) (Simonyan et al., 2013)) For a network f : Rd → Rm, an input x, and a

class of interest y, the Saliency Map AS(x) equals to

AS(x) =
∂ fy(x)

∂x
.

The feature importance found by AS(x) can be thought of as the green case in Figure 2.1; thus, it

is a hyper-local explanation for the model’s behavior at the input of interest x. As a result, it may not

be able to quantify the feature’s importance in a wider neighborhood. An alternative to Saliency Map
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is Integrated Gradient (Sundararajan et al., 2017) (Definition 5), which on the other hand measures the

feature’s importance in a global view. Formally, AIG(x) integrates the gradient of the model’s output w.r.t

the input for all points on a linear path from a baseline input b to the input x to explain.

Definition 5 (Integrated Gradient (IG) (Sundararajan et al., 2017)) For a network f : Rd → Rm, an input x,

a class of interest y, and a baseline input b, Integrated Gradient AIG(x) equals to

AIG(x) =
∫ 1

0

∂ fy(r(t; x, b))
∂r

∂r(t; x, b)
∂t

dt

= (x− b) ·
∫ 1

0

∂ fy(r(t; x, b))
∂r

dt where r(t; x, b) = b + (x− b)t.

To see why AIG(x) is measuring the global geometry of the model’s behavior, it is useful to think of the

gradients of points on b→ x as the first-order approximation to function, the integral of which averages

a set of local geometry information obtained from these points. As a result, AIG(x)j is the contribution

of the j-th feature when its value changes from bj to xj. Care must be taken that the choice of baseline b

determines which linear path (and the corresponding global geometry) is of interest. Usually, b is set to a

black image, i.e. a vector of all 0s, for image data because the changes from a black image to the current

one resemble the process of shedding a light onto the input so the relevant features gradually show up

when moving towards x. The same baseline may not work properly for other data types, e.g. graphs as

exemplified by (Wang et al., 2023).

To summarize, the feature importance scores of the Integrated Gradient differ from Saliency Map by

respecting a larger input neighborhood. One caveat for using the black image (i.e. b = 0) as the baseline

is that the corresponding neighborhood varies from one instance to another and is sometimes sensitive

to particular feature values. For instance, for input that is near the original point, Integrated Gradient

captures a much local neighborhood compared to the point that is further away. That is, if ||x− b|| → 0,

Integrated Gradients may converge towards Saliency Map. Moreover, for feature values close to 0 (i.e.

xj ≈ 0), its contribution is often close to 0 as well because of the product between xj − bj and the gradient

integral in Definition 5. Thus, the black background of MNIST images usually receives small importance

scores even though the model is possible to use noises in the background to classify the input.

In contrast to a hyper-local or a global neighborhood, this thesis is more interested in measuring the

feature importance in a fairly local neighborhood around the point of interest and capturing the model’s

local behavior. In Section 2.2.2, we describe our new approach, Boundary-based Integrated Gradient, for

realizing such purpose.
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(a) (b) (c)

Figure 2.2: Different classifiers that partition the space into regions associated with apple or banana. (a)
A linear classifier where n̂ is the only faithful explanation and v is not. (b) A deep network with ReLU
activations. Solid lines correspond to decision boundaries while dashed lines correspond to facets of
activation regions. (c) Saliency map of the target instance may be normal to the closest decision boundary
(right) or normal to the prolongation of other local boundaries (left).

2.2.2 Boundary-based Integrated Gradient

Boundary-based Integrated Gradient (BIG) is an attribution method, the score of which manifests the

importance of a feature within a local neighborhood. That is, we propose a way to automatically select a

baseline input b for Integrated Gradient (instead of letting b to be determined by a human user), which

leads the gradient integral to capture the nearby decision boundaries. These nearby decision boundaries,

compared to ones that are further away, are important local geometrical information of the model’s output

in the input space. To connect a decision boundary and the local geometry of a model’s output, we

start with a simpler case of linear models, which contain exactly one boundary, and then generalize to

piecewise-linear classifiers as they are embodied by deep ReLU networks.

Attribution and Decision Boundary in Linear Models. Consider a binary classifier C(x) = sign(w⊤x)

that predicts a label {−1, 1} (ignoring “tie” cases where C(x) = 0, which can be broken arbitrarily). In its

feature space, C(x) is a hyperplane H that separates the input space into two open half-spaces S1 and S2 (

Figure 2.2(a)). Accordingly, the normal vector n̂ of the decision boundary is the only vector that faithfully

explains the model’s classification while other vectors, while they may describe directions that lead to

positive changes in the model’s output score, are not faithful in this sense (see v in Figure 2.2(a) for an

example). In practice, to assign attributions for predictions made by C, Saliency Map and the integral part

of Integrated Gradient return a vector characterized by z = k1n̂ + k2 (Ancona et al., 2018b), where k1 ̸= 0

and k2 ∈ R, regardless of the input x that is being explained. In other words, these methods all measure

the importance of features by characterizing the model’s decision boundary, and are equivalent up to the

scale and position of n̂.
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Generalizing to Piecewise-Linear Boundaries. In the case of a piecewise-linear model, such as a ReLU

network, the decision boundaries comprise a collection of hyperplane segments that partition the feature

space, as in H1, H2 and H3 in the example shown in Figure 2.2(b). Because the boundary no longer

has a single well-defined normal, one intuitive way to extend the relationship between boundaries and

attributions developed in the previous section is to capture the normal vector of the closest decision

boundary to the input being explained. However, as we show in this section, the methods that succeeded

in the case of linear models (i.e. Saliency Map and Integrated Gradient) may in fact fail to return such

attributions in the more general case of piecewise-linear models, but local robustness often remedies this

problem. We begin by reviewing key elements of the geometry of ReLU networks (Jordan et al., 2019a).

ReLU Activation Polytopes. For a neuron u in a ReLU network f (x), we say that its status is ON if its

pre-activation u(x) ≥ 0, otherwise it is OFF. We can associate an activation pattern denoting the status of

each neuron for any point x in the feature space, and a half-space Au to the activation constraint u(x) ≥ 0.

Thus, for any point x the intersection of the half-spaces corresponding to its activation pattern defines a

polytope P (see Figure 2.2(b)), and within P the network is a linear function such that

∀x ∈ Rd, x ∈ P =⇒ f (x) = w⊤P x + bp,

where the parameters wP and bP can be computed by differentiation (Fromherz et al., 2021a). Each facet of

P (dashed lines in Figure 2.2(b)) corresponds to a boundary that “flips” the status of its corresponding

neuron. Similar to activation constraints, decision boundaries are piecewise-linear because each decision

boundary corresponds to a constraint fi(x) ≥ f j(x) for two classes i, j (Fromherz et al., 2021a; Jordan et al.,

2019a).

Gradients Might Fail. Saliency maps, which we take to be simply the gradient of the model with respect

to its input, can thus be seen as a way to project an input onto a decision boundary. That is, a Saliency Map

AA(x) is a vector that is normal to a nearby decision boundary segment. However, as others have noted, a

Saliency Map is not always normal to any real boundary segment in the model’s geometry (see the left

plot of Figure 2.2(c)), because when the closest boundary segment is not within the activation polytope

containing x, the Saliency Map will instead be normal to the linear extension of some other hyperplane

segment (Fromherz et al., 2021a) In fact, iterative gradient descent typically outperforms the Fast Gradient

Sign Method (Goodfellow et al., 2015a) as an attack demonstrates that this is often the case.

Boundary-based Attribution. In this section, we build on the insights of our analysis to present a set

of novel attribution methods that explicitly incorporate the normal vectors of nearby boundary segments.
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Using the normal vector of the closest decision boundary to explain a classifier naturally leads to Definition 6,

which defines attributions directly from the normal of the closest decision boundary.

Definition 6 (Boundary-based Saliency Map (BSM)) For a network f : Rd → Rm and its integer prediction

F : Rd → [m], an input x, a class of interest y, we define Boundary-based Saliency Map ABS(x) as follows:

ABS(x) =
∂ fy(xadv)

∂xadv
,

where xadv is the closest adversarial example to x,

so F(x) ̸= F(xadv) but ∀xm, ||xm − x|| < ||xadv − x|| =⇒ F(x) = F(xm).

One limitation of using Definition 6 is obvious: this is still a hyper-local method as Saliency Map whereas

our purpose is to find a local attribution method. Thus, our goal is to incorporate more nearby decision

boundaries around x. The fact is that even in a small network, there will be numerous boundary segments

in the vicinity of a relevant point. Taking inspiration from Integrated Gradients, Definition 7 proposes the

Boundary-based Integrated Gradient (BIG) by aggregating the attributions along a line between the input

and its closest boundary segment.

Definition 7 (Boundary-based Integrated Gradient(BIG)) For a network f : Rd → Rm and its integer pre-

diction F : Rd → [m], an input x, a class of interest y, we define Boundary-based Integrated Gradient ABIG(x) as

follows:

ABIG(x) = (x− xadv) ·
∫ 1

0

∂ fy(r(t; x, b))
∂r

dt,

where r(t; x, xadv) = xadv + (x− xadv)t.

Here xadv is the nearest adversarial example to x. That is,

F(x) ̸= F(xadv) and ∀xm.||xm − xadv|| < ||x− xadv|| =⇒ F(xm) = F(x).

Geometric View of BIG. BIG explores a linear path from the boundary point to the target point. Because

points on this path are likely to traverse different activation polytopes, the gradient of intermediate points

used to compute gIG are normals of linear extensions of their local boundaries. As the input gradient

is identical within a polytope Pi, the aggregate computed by BIG sums each gradient wi along the path

and weights it by the length of the path segment intersecting with Pi. In other words, one may view IG

as an exploration of the model’s global geometry that aggregates all boundaries from a fixed reference

point, whereas BIG explores the local geometry around x. In the former case, the global exploration may
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Figure 2.3: Visualizations of geometrical interpretations of Saliency Map (SM), Boundary-based Saliency
Map (BSM), Integrated Gradient (IG) and Boundary-based Integrated Gradient (BIG).

reflect boundaries that are not particularly relevant to the model’s observed behavior at a point, whereas

the locality of BIG may aggregate boundaries that are more closely related. This geometrical comparison

is illustrated in Figure 2.3. Gradient computations are depicted as projecting the input onto a particular

decision boundary. While SM projects to a nearby boundary (H1), BSM projects to the nearest one (H2). IG

(the red dashed path) from a global baseline b (e.g. b = 0) aggregates boundaries in colorful shaded areas;

BIG (the green dashed path) integrates from the point xadv on the nearest boundary H2 to x and therefore

aggregates nearby boundaries, H1 and H2 in gray shaded areas.

Finding nearby boundaries. Finding the exact closest boundary segment is equivalent to the problem

of certifying local robustness (Fromherz et al., 2021a; Jordan et al., 2019a; Kolter & Wong, 2018; Lee et al.,

2020a; Leino et al., 2021c; Tjeng et al., 2019b; Weng et al., 2018b), which is NP-hard for piecewise-linear

models (Sinha et al., 2020). To efficiently find an approximation of the closest boundary segment, we

leverage and ensemble techniques for generating adversarial examples, i.e. PGD (Madry et al., 2018b),

AutoPGD (Croce & Hein, 2020a) and CW (Carlini & Wagner, 2017a), and use the closest one found given

a time budget. The details of our implementation will be discussed in Section 3.1 of this chapter and

Section 3.3 of Chapter 3.

2.2.3 Attribution Faithfulness

Section 2.2.1 introduce Saliency Map (SM) and Integrated Gradient (IG) that one can employ to find the

importance of an input feature w.r.t a hyper-local and global neighborhood, respectively. As a complementary

to SM and IG, Section 2.2.2 introduces Boundary-based Integrated Gradient (BIG) to find the importance

of an input feature w.r.t a local neighborhood. In this section, we justify that these three approaches are
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both faithful to the network f in their corresponding input neighborhoods. To date, there are many ways to

define faithfulness for attributions of a deep model. Recall our use of feature attribution is to locate Iρ
f (x)

(i.e. the ρ-important features to the model), we need attribution to have a reasonable sensitivity to the

change of the input (within the corresponding neighborhood) and to the change of network parameters.

We refer to these two properties as Distributional Faithfulness and Parameter Faithfulness, respectively.

Distributional Faithfulness. Attributions must be sensitive to the change of features, e.g. x + ϵ, in the

input but should only account for the output change, i.e. f (x + ϵ)− f (x), and no more than that. For this

reason, Yeh et al. (Yeh et al., 2019) introduce the INFD score (Definition 8) to measure the deviation of an

attribution method from precisely accounting for the output change of the model. Namely, a lower INFD

score indicates that the underlying attribution is more faithful.

Definition 8 (INFD (Yeh et al., 2019)) For a network f : Rd → Rm, a distribution of interest N , a feature

attribution A that explains the output of class y, the INFD score for A is defined as

INFD(A) = Eϵ∼N
[
A(x)⊤ϵ− ( fy(x + ϵ)− fy(x))

]2
.

To put it simply, Definition 8 measures the goodness of using the attribution score as the weight to

linearly approximate the function within the neighborhood defined by the distribution N . Notice that

Definition 8 measures the difference of difference, i.e. the difference between the change explained by the

attribution score A(x)⊤ϵ and the change of model’s output ( fy(x + ϵ)− fy(x), instead of the difference

between outputs, e.g. A(x)⊤x− fy(x), because we do not care if the attribution accounts for the bias, if any, of

the model. For example, if the target model to explain is f (x) = ∑i wixi + wbias, an attribution is sufficiently

faithful to account for the change of output caused by ∑i wixi and ignore wbias. Thus, fy(x + ϵ)− fy(x)

removes the bias term if any. A limitation of Definition 8 is that it assumes that the attribution scores must

be linearly combined with the feature, one more generic form of which can be in Wang et al. (Wang et al.,

2023).

• The Faithfulness of SM. As shown by Yeh et al. (Yeh et al., 2019), SM is the most faithful method, i.e.

the one that minimizes INFD score, w.r.t to the delta distribution at x. Namely, when the width of N

goes to 0, the INFD also goes to 0 if A(x) = AS(x).

• The Faithfulness of IG and BIG. Because IG is a complete attribution (Sundararajan et al., 2017),

i.e. ∑j AIG(x)j = fy(x)− fy(b), it is obvious that (the integral part of) IG minimizes INFD if the

distribution N is a delta distribution at the baseline b. However, we are more interested in the

faithfulness of IG w.r.t a uniform distribution over a linear line between the baseline and the input
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Attribution Neighborhood Faithfulness User-defined Baseline Using Adv. Attack

Saliency Map hyper-local optimal to INFD ✗ ✗

Integrated Gradient global completeness ✓ ✗

Boundary-based
Integrated Gradient local completeness ✗ ✓

Table 2.2: Comparing Saliency Map, Integrated Gradient and Boundary-based Integrated Gradient.

because this is the same distribution that the integral part of IG aggregates over. In theory, one of the

way to minimize INFD w.r.t the uniform distribution over the linear path U is to: 1) use every point

u ∼ U as a baseline and compute the integral of gradients from u to x; and 2) aggregate over these

integrals (Yeh et al., 2019). Therefore, IG is suboptimal for minimizing INFD over the linear path

because it only minimizes a proxy of the objective, i.e. INFD score over a deterministic perturbation

with the starting point of the path. In practice, the implementation of the optimal attribution is

infeasible due to a great computation overhead so we still use IG instead. Our analysis of IG should

directly applies to BIG because they are only different on the choice of the baseline.

Parameter Faithfulness. Attributions must be sensitive to the parameters of the network because a

degenerated model is not supposed to share the same explanation with a well-generalized one. Adebayo

et al. (2018) propose a sanity check to determine the parameter faithfulness of an attribution. That is, we

repeat the computation of feature attribution after parameters at each layer are replaced with random

numbers from top to bottom. A faithful attribution is expected to have different results, measured by a

similarity metric, e.g. Rank Order Correlations between the absolute values of attribution scores (Adebayo

et al., 2018), compared to the attribution of a model without randomization. Since Adebayo et al. (2018) have

shown that SM and IG have successfully passed this sanity check so we here only include the experiment

results for BIG. We use a pretrained ResNet50 (He et al., 2015) on ImageNet that is publicly available on

Pytorch and gradually randomize the weights for 5 layers at each time from top to bottom until we have

a fully random model. Notice that to ensure the randomization does not produce NaN output we ensure

the randomized weights have the same norm. The result for BIG is shown in Figure 2.4. We consider BIG

passes the sanity check as the result is similar compared with the top row of Figure 4 in Adebayo et al.

(2018).

2.2.4 Summary and Discussion

From Section 2.2.1 to Section 2.2.3, we introduce three types feature attributions: Saliency Map, Integrated

Gradient, and Boundary-based Integrated Gradient for localizing important features to the network’s

prediction. Their importance scores are measured w.r.t a hyper-local, global and local neighborhoods,
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Figure 2.4: The rank order correlations of the absolute values of BIGs against the number of layers (counting
from top to bottom) where trainable weights are replaced with random matrices.

respectively. To ensure these attributions truly manifest the model’s behaviors in the corresponding

neighborhood, we demonstrate their distributional and parameter faithfulness in Section 2.2.3. Comparisons

between these attributions are also summarized in Table 2.2.

Besides the choices in this thesis, there are other candidate attributions with similar reference neighbor-

hoods. The following paragraphs briefly discuss the related works and the reasons why we use Saliency

Map, Integrated Gradient, and Boundary-based Integrated Gradients over others.

Other hyper-local Attributions. Candidates that also find hyper-local important features include Guided

Backpropagation (GB) (Springenberg et al., 2014), Layer-wise Relevance Propagation (LRP) (?), methods

based on Class Activation Map(CAM) (Selvaraju et al., 2019; Wang et al., 2020a; Zhou et al., 2016). Compared

to Saliency Map, GB only backpropagates positive gradients from the output to the input by filtering

out negative gradients at each activation layer. Adebayo et al. (Adebayo et al., 2018) have shown with

empirical results that GB is not a faithful method because of its failure to pass the sanity check discussed

in Section 2.2.3; therefore, we do not use GB in this thesis. Similarly, LRP also modifies the gradient

backpropagation with different rules and some of these rules also fail to be faithful to the model (Adebayo

et al., 2018). On the other hand, the implementation of LRP rules is not invariant to the network architecture

so one needs to implement LRP for each type of layer in the network. Lastly, CAM-based methods

aggregate channels of the internal activation, e.g. from the last convolution layer, and up-sample to the

input size for identifying important features. Because there is no faithfulness justification for CAM-based

methods, we do not consider this set of methods in this paper.

Other Global Attributions. Candidates that also explore globally important features include DeepLIFT (Shriku-

mar et al., 2017), Occlusion-N (Ancona et al., 2018a), and a set of baselines for Integrated Gradient (Erion
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et al., 2021; Yeh et al., 2019). Similar to LRP, DeepLIFT (Shrikumar et al., 2017) also modifies the gradient

backpropagation but it ensures the same completeness property as Integrated Gradient. As a result, DeepLIFT

is not implementation-invariant for network architecture and thus is less flexible compared to Integrated

Gradient. Occlusion-N is a global attribution because it can be thought as measuring the contribution

of the chosen N features from baseline values to the current ones. Occlusion-N (Ancona et al., 2018a) is

computationally expensive because of a good number of inferences runs is required when N is small, e.g.

N=1. On the other hand, if N » 1, we must assign the same importance scores for N features, which may

over-simplify the way the model processes the input and leads to an unfaithful attribution map. Lastly,

besides choosing one baseline, recent works also propose to use multiple baselines and average Integrated

Gradients computes over these baselines (Erion et al., 2021; Yeh et al., 2019). As is briefly discussed in

Section 2.2.3 and detailed by Yeh et al. (Yeh et al., 2019), aggregations of Integrated Gradients can minimize

INFD scores w.r.t some distribution of interest but it often comes with a significant computation overhead

especially for large models. As a result, this thesis only uses Integrated Gradient.

Other Local Attributions. A similar line of work to Boundary-based Integrated Gradient is AGI (Pan et al.,

2021). AGI is motivated to find a non-linear path that is linear in the representation space, instead of a linear

line in the input space (i.e. the path integral used in Integrated Gradient and Boundar-based Integrated

Gradient). AGI uses Projected Gradient Descend (PGD) (Madry et al., 2018b), an iterative approach to

search for another input that has a different prediction as the underlying input. After PGD stops, AGI

aggregates gradients on the non-linear path generated by the PGD search. The path of PGD attack can be

twisted, circular, and even broken lines either due to the projection or the overlook of higher-order terms

in the derivative for efficiency reasons. We believe such non-linearity in the path integral might not be

necessary. Besides line integral, aggregating the gradients over a set of points sampled from a Gaussian

distribution is another popular way of capturing the local geometry of the model, which is known as

Smooth Gradient (Smilkov et al., 2017). In Section 3.3 of Chapter 3, we provide greater details on comparing

Smooth Gradient with Saliency Map and Boundary-based Integrated Gradient and conclude that Smooth

Gradient is equivalent to computing Saliency Map in a model with smoothed decision boundary compared

to the original model. As a result, we do not use Smooth Gradient to capture the behavior of the current

(i.e. non-smoothed) model.
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Segmentation Bounding Box

Figure 2.5: Important features can be found by human oracles (left) and approximated by a segmentation
output (middle) or a bounding box (right).

2.3 Capturing Truly Important Features with Bounding Box

In Section 2.2, we describe our use of feature attributions for finding a set of important features as a faithful

way to seek for Iρ
f (x), i.e. the important features to DNNs in an empirical way. In this brief section, we

discuss an empirical way for localizing Iρ
f ∗(x), i.e. the important features to humans, using human-labeled

bounding box information.

The ideal way of locating the important features is to have an oracle, e.g. a human, to give locations

or even continuous values for the importance of each pixel. To date, there is a large body of work that

conducts a user survey for the results of attributions. However, the only useful information from any

human-based study to our purpose is the whereabouts of the object in the image that is associated with the

label, which is often provided in many standard vision datasets, e.g. ImageNet (Deng et al., 2009), as a

segmentation or a bounding box shown in Figure 2.5. Despite the limitation that segmented regions and

bounding boxes only indicate where this pixel is relevant or not, they are still human-labeled and thus

faithful to the true mapping f ∗ of the data distribution.

For localizing the aligned set of features Iρ
f ∗(x), we use the bounding box instead of the segmentation

results in this chapter. The advantage of object segmentation is that it contains fewer pixels from unrelated

pixels so it provides a more precise way to group important pixels compared to a bounding box, e.g.

Figure 2.5. However, this thesis is more interested in the change of feature alignment as a result of training

instead of the actual values. Besides, bounding boxes are easier to assess and presented together with

classification labels in ImageNet. Because of these two reasons, we decide to use bounding boxes to localize

Iρ
f ∗(x) for ImageNet images in the rest of the thesis.
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2.4 Locality

With the assistance of feature attributions discussed in Section 2.2 and the use groundtruth bounding

boxes discussed in Section 2.3, this section proposes a new metric, locality, as a practical way of assessing

(ρ, λ)-feature alignment.

For feature attributions introduced in this thesis, i.e. Saliency Map (SM), Integrated Gradient (IG) and

Boundary-Based Integrated (BIG), we use their attribution scores as a proxy for ρ-important features. Recall

Definition 1 where a feature xj is ρ-important if

Eϵ∼N [(xj + ϵ) · fy(x1, · · · , xj + ϵ, · · · , xd)] ≥ ρ. (2.2)

By using attribution scores as proxy for ρ-importance, we say a feature feature xj is ρ-important w.r.t A∗ if

A∗(x)j ≥ ρ.

where ∗ can be S, IG or BIG. Notice that the distribution of interest, N , in Equation 2.2 corresponds to the

different neighborhoods of interests used in SM, IG, and BIG. That is, N corresponds to a delta distribution

at x for using SM AS(x) and uniform distributions over lines for using Integrated Gradient AIG(x) and

Boundary-based Integrated Gradient ABIG(x). For the choice of ρ, we simply set ρ = 01 to include all

features with positive correlations to the output. When ρ = 0 is clear from the context, we directly write

I f (x) and formally use

I f (x)j = A∗(x)j · I[A∗(x)j > 0] (∗ can be S, IG or BIG).

Similarly, we translate the bounding box coordinates into a set of pixels in that bounding box, which is

considered to be input used by the true function f ∗ employed by humans. In this case, we directly write

I f ∗(x) as

I f ∗(x)j = I[j in the bounding box of x].

2.4.1 Locality Metrics

Our use of feature attribution and the bounding box information results in a continuous and discrete

approximations for the important features to the model I f (x) ∈ Rd
+ and truly important features I f ∗(x) ∈

{0, 1}d, respectively. To compare the similarity between I f (x) and I f ∗(x), we define precision (Definition 9,

also known as Energy Game in (Wang et al., 2020a)) and recall scores (Definition 10, also known as Positive

1Notice that one can use other thresholds for ρ to obtain scores similar to mAP. For our purpose of evaluating locality in this
thesis, varying the threshold is perhaps not necessary so we will stick with setting ρ = 0.
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Figure 2.6: An illustration of locality with a precision-like and a recall-like similarity metrics, respectively.

Portion (Wang et al., 2022)) for feature importance. An illustration of these two metrics is included in

Figure 2.6.

Definition 9 (Precision Locality) For a network f and an input x, let I f (x) be the important features to the

model approximated by an attribution A(x) and I f ∗(x) be the truly important features approximated by the bounding

box of x. The precision Pre f of feature importance to the network f equals to

Pre f (x) =
∑j I f (x)jI f ∗(x)j

∑j I f (x)j
.

Definition 10 (Recall Locality) For a network f and an input x, let I f (x) be the important features to the model

approximated by an attribution A(x) and I f ∗(x) be the truly important features approximated by the bounding box

of x. The recall Rec f of feature importance for the network f equals to

Rec f (x) =
∑j I f (x)jI f ∗(x)j

∑j |A∗(x)j|I f ∗(x)j
.

The nuance between our Definition 9 (and 10) and the conventional definitions of precision (and recall)

in binary classification is that I f (x) is a continuous vector while the output label from a binary classifier is

discrete. We do not binaries I f (x) to have discrete values because it loses the magnitudes of attributions.

In the spirit of using the geometrical mean between the precision and recall, i.e. F1-locality, to balance two

metrics as follows.

F1 f (x) = 2 ·
Pre f (x)Rec f (x)

Pre f (x) + Rec f (x)
. (2.3)

2.5 Chapter Summary

In summary, this chapter provides a formal definition of feature alignment (Definition 2) through the lens

of feature correlations. Despite the soundness of using Definition 2 to evaluate the alignment of a deep
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model, it is practically infeasible without knowing the true mapping, employed by humans’ perception

system and brains, from the data to the label. Our approach to arrive at a practical evaluation metric, i.e.

locality, for feature alignment includes the following three steps.

First, we use feature attribution as a tool to assign importance scores to each input features. In addition

to Saliency Map (SM) and Integrate Gradient (IG), two attribution methods in the prior works, we propose

a novel attribution tool — Boundary-based Integrated Gradient (BIG). While SM and IG faithfully return

hyper-local and globally important features, BIG concentrates on a more local neighborhood and is also

faithful due to the same guarantee as IG. Secondly, we identify the bounding box in standard vision tasks

as a proxy for perceptibly important features because it contains location information about the object

associated to the label. With attributions and bounding boxes, the last step proposes a set of metrics, i.e.

locality scores, by adapting well-known precision, recall and F1 scores.

In the following Chapter 3, we use the tools developed in this chapter to evaluate the feature alignment

of the recent state-of-the-art classifiers.



Chapter 3

Locality As A Result Of Robustness

Deep vision models have been growing deeper and changed a lot from the classic AlexNet Krizhevsky et al.

(2012) and VGG Simonyan et al. (2013) architectures to the recent Vision Transformers (Dosovitskiy et al.,

2020) that leads the Top-1 accuracy on ImageNet. It is interesting to ask the following research question.

Are more accurate vision models also more aligned on features?

Using attribution-based locality metrics, we give an empirical answer to the question above in Section 3.1.

However, the title of this chapter probably has spoiled the result — we do not find more accurate models

have better F1-locality compared to the less accurate ones, and sometimes can even be as low as models

with random weights. A low locality of highly accurate models may indicate the limitation of relying on

test accuracy for solving the issue of feature misalignment.

Compared to accuracy, this chapter demonstrates that adversarial robustness, i.e. the resistance of a

network’s inference against semantically meaningless perturbations to the input, as a more necessary

condition to better alignment, provided that humans are robust models. For example, adding salt-and-

pepper noise to an image of dog does not prevent our brain from seeing the dog. Similarly, replacing

the word "story" with the word "plot" in the sentence "...the story looks horrible and..." does not change

the fact the sentence contains negative sentiment. If a deep model indeed manages to leverage the same

features in the input as humans do, i.e. in the spirit of locality, the same perturbations should not fool the

model’s inference either. However, the fact is that deep networks have been found to be vulnerable to tiny

perturbations. For example, with imperceptible noise injected into an image of a cat, a (misaligned) deep

model would change its prediction from CAT to DOG as depicted in Figure 3.1.

The rest of this chapter is therefore organized as follows. In Section 3.2, we give a formal definition

of adversarial robustness and the corresponding adversary we study in this chapter. Next, we provide a

30
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Figure 3.1: Humans and well-aligned DNNs are robust classifiers but misaligned DNNs are not.

set of theoretical and empirical results on showing adversarial robustness help to improve the locality of

the model in Section 3.3. The promise of improving model robustness towards better locality motivates

our study on training more robust neural networks. Towards this end, this thesis discusses two novel

approaches that update the state-of-the-art robustness guarantee for deep vision models under empirical

attacks (Section 4) and formal verification (Section 5), respectively.

3.1 Accuracy and Locality

The quality of a classification model is often measured by its accuracy on a test (or validation) set that is

not seen by the model at the train time. The classes of test images are labeled by humans so accuracy is a

proxy indicator of output alignment between the model and humans. However as we have pointed out test

sets are often incomplete as we are unable to exhaust all samples from the true data distribution; therefore,

we instead evaluate the feature alignment, as quantified by locality in this thesis.

In this section, we evaluate locality on classifying a subset of ImageNet, i.e. ImageNette (Howard), with

a set of pre-trained models with different Top-1 accuracies. Our goal is to check whether the more accurate

model indeed aligns better with our humans’ perception. We first describe our experiment setup.

3.1.1 Experiment Setup

Models. We evaluate locality on the following pretrained models on ImageNette and note their Top-1

accuracy (measured on the full test set of ImageNet) in the parenthesis: SqueezeNet (58.1%) (Iandola

et al., 2016); VGG16 (Simonyan & Zisserman, 2015)(71.6%); ResNet50 (He et al., 2015) (76.1%); ViT-

B32 (Dosovitskiy et al., 2020) (75.9%); ViT-B16 (Dosovitskiy et al., 2020) (81.1%). SqueezeNet and VGG nets
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Figure 3.2: Plots of Locality v.s. Top-1 Accuracy for several pre-trained models. We measure F1-scores
of locality (Equation 2.3) with Saliency Map (left), Integrated Gradient (middle) and Boundary-based
Integrated Gradient (right). Results of averaged over 1000 images.

are classic architectures for vision classifications, while ResNets and ViTs are the modern architectures

that provide state-of-the-art performances on ImageNet. Moreover, ViT differs from other architectures by

replacing all convolution layers with attention layers so our conclusion does not just hold for CNNs. For a

baseline comparison, we also use a ResNet50 with random weights.

Bounding Box. We use 1000 images from the test set of ImageNette with a bounding box area less than

80% the full area of the image. The selection is to avoid using well-cropped samples, e.g. the object is in

the entire image and the bounding box is a bad approximation to the semantically meaningful features.

Attributions and Metrics. We use Saliency Map (SM), Integrated Gradient with a zero baseline (IG) and

Boundary-based Integrated Gradient (BIG) to measure the important features to the model. We use 20

points to aggregate the integrals in IG and BIG. For the boundary search in BIG, we use a combination of

PGD and CW attacks (see Appendix B for implementation details). We plot F1 for each model with every

attribution in Figure 3.2 and leave results on Pre and Rec in Appendix B.

3.1.2 Results

On the x-axis of Figure 3.2 we label the Top-1 accuracy of each model reported on the test set of ImageNet,

while the y-axis of report the F1 locality score measured with Saliency Map, Integrated Gradient and

Boundar-based Integrated Gradient, respectively in each plot. For baseline comparison, we also repeat the

same experiment with a random ResNet50. Ideally, one would expect F1 locality to go up as the accuracy

increases. In practice, as the accuracy of the network goes up from the classic SqueezeNet to the recent

Vision Transformer (ViT), their F1 locality scores do not differ significantly from one another.
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Figure 3.3: Plots of visualizations of Saliency Map (SM), Integrated Gradient (IG) and Boundary-based
Integrated Gradient (BIG) on pre-trained ResNet50. Attributions are visualized as heatmaps using Tru-
lens (Leino et al., 2021a) so positive scores are in red and negative scores are in blue.

The observation is not too surprising. As prior works have shown that deep networks can generalize to

the given test set with spurious and high-frequency features (Ilyas et al., 2019; Wang et al., 2019), which are

often imperceptible to humans as well. Compared to these prior works, our results directly show that even

the state-of-the-art classifiers could have relied on features that are improper for the task at hand and thus

should not be used in deployment. Again we want to emphasize that this is not a pitfall of attributions or

the metric but instead a problem of the underlying model. As we will show in the next chapter when the

quality of the model, e.g. robustness, is improved, the locality will be improved accordingly.

The second observation from Figure 3.2 is that F1 locality on pre-trained models are not significantly

distinguishable from random models, except on the locality measured with BIG. This observation is not

too surprising as SM and IG often look semantically meaningless on standard models as exemplified in

Figure 3.3. Visualizations on BIG look sharper than SM and BIG but still may highlight irrelevant features.

This observation is a demonstration that even though in general we do not believe improved accuracy leads

to improved locality, these models are still expected to have learned partially useful features compared to a

random model, which, however, can not be shown by SM and IG.
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3.2 Adversarial Robustness

An adversary considered for a deep model is usually a third-party which aims to cause the malfunction

to the model and maximize the adversary’s utility. For example, directly injecting well-crafted noise to

the input (Carlini & Wagner, 2017b; Croce & Hein, 2020a; Goodfellow et al., 2015b; Madry et al., 2018b)

or creating physical objects to fool the camera of a vision model (Du et al., 2022; Kurakin et al., 2016; Lee

& Kolter, 2019; Sharif et al., 2016). The type of attack considered in this thesis is the former, i.e. after an

image is taken by the camera. Because the adversary’s goal is to fool the deep model and keep the input

perceptionally benign to humans (otherwise it is not reasonable to require the model to be consistent on

outputs when humans also disagree), an adversary is often given a limited budget, i.e. a maximum amount

of perturbation. In this thesis, we consider an adversarial perturbation is norm-bounded with a small

radius so the perturbation is often imperceptible to humans.

Recall that in Chapter 2 we use f : Rd → Rm to denote a neural network that takes an input x ∈ Rd and

outputs a logit vector for m classes. We use the uppercase F : Rd → [m] to denote the integer prediction of

the network such that F(x) = arg maxj f j(x). In addtion, we use || · ||p, 1 ≤ p ≤ ∞, to denote the ℓp norm

of a vector. A machine learning developer who aims to defend against a norm-bounded adversary therefore

considers enforcing Local Robustness (Definition 11) to the model. Frequent choices of p in Definition 11 are

1, 2 and ∞ and this thesis will focus on the 2 and ∞ cases.

Definition 11 (ϵ-Local Robustness) A network F(x) = arg maxj f j(x) is ϵ-Local Robustness at x w.r.t norm,

|| · ||p, if

∀x′ ∈ Rd, ||x′ − x||p ≤ ϵ =⇒ F(x′) = F(x).

Evaluating Local Robustness. To check for the percentage of data on which the model is locally robust,

we calculate the robust accuracy on a dataset Dn = {(xi, yi)}n
i=1 as follows

RobustAcc.(Dn) =
1
n ∑

i
max
||δ||p≤ϵ

I[F(xi + δ) = yi]. (3.1)

The maximization in Equation 3.1 is either approximated with an empirical attack, e.g. Projected Gradient

Descend (PGD (Madry et al., 2018b)) or relaxed and upper-bounded by a certification approach, e.g. using

the Lipschitz Constant of the function (Leino et al., 2021c). We refer to the robust accuracy found by an

empirical attack as Empirical Robust Accuracy (ERA) and the one returned by a certification process as

Verifiable Robust Accuracy (VRA) in the rest of the thesis.
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3.3 Robustness and Locality

In this section, we run experiments to provide empirical evidence about our hypothesis – robust models

are better aligned with our perception as they are not easily fooled by imperceptible noises.

3.3.1 Improved Locality with Robustness

Firstly, we describe the setup of our experiments.

Models. In Chapter 2, we evaluate the locality on pretrained and non-robust SqueezeNet, VGG16,

ResNet50, ViT-B32 and ViT-B16. For apple-to-apple comparisons, we use their robust versions1 that are

trained under ℓ∞-norm-bounded adversaries with a raidus of ϵ = 4/255 on ImageNet. Unfortunately we

are unable to find a robust SqueezeNet so in this section we only use the rest four models. The ERA of

these models are evaluated against AutoAttack (Croce & Hein, 2020b), a state-of-the-art adversarial attack

for empirically evaluating local robustness. The ERAs for these models are reported as VGG16 (25.92%),

ResNet50 (34.90%), ViT-B32 (37.38%) and ViT-B16 (43.04%) by Mao et al. (2022). Notice that the non-robust

version of these models have almost 0% ERA under attack. For baseline comparison, we continuously use

a ResNet50 with random weights.

Bounding Box. We use 1000 images from the test set of ImageNette (Howard), a subset of ImageNet,

with a bounding box area less than 80% of the full area of the image. The selection is to avoid using

well-cropped samples, e.g. the object is in the entire image and the bounding box is a bad approximation

to the semantically meaningful features.

Attributions and Metrics. We use Saliency Map (SM), Integrated Gradient with a zero baseline (IG) and

Boundary-based Integrated Gradient (BIG) to measure the important features to the model. We use 20

points to aggregate the integrals in IG and BIG. For the boundary search in BIG, we use a combination of

PGD and CW attacks (see Appendix B for implementation details). We plot F1 for each model with every

attributions in Figure 3.4 (and leave Pre and Rec in Appendix B).

Secondly, we are ready to discuss our results shown in Figure 3.4, in which plots of F1 locality are sorted

from left to right by the corresponding attribution methods: Saliency Map (SM, on the left), Integrated

Gradient (IG, on the middle) and Boundary-based Integrated Gradient (BIG, on the right). The x-axis

denotes the ERA of each robust model and the y-axis is the locality measured with F1-score (Equation 2.3).

Scatter points in green are the results for robust models. To compare with the non-robust counterparts of

1weights are publicly available from Mao et al. (2022).
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Figure 3.4: Plots of Locality v.s. Empirical Robust Accuracy (ERA) for robust models under ℓ∞-norm-
bounded adversaries with a radius of 4/255. We measure the F1-score of locality (Equation 2.3) with
Saliency Map (left), Integrated Gradient (middle) and Boundary-based Integrated Gradient (right). Results
are averaged over 1000 images. Blue scatters are F1-scores measured on the non-robust counterparts, i.e.
reusing results from Figure 3.2, for reference. The green arrays highlight the trend of locality against ERA.

the underlying models, we also add the scatter points from Figure 3.2 and color them in blue in the plots.

We use the vertical blue arrows to highlight the improvement of locality on each model. The green arrow

highlights how F1-score changes following the improvement of ERA across robust models. Now we are

ready to discuss our observations.

Finding I: Robust models have higher locality than non-robust ones. In every plot, any green scatter,

i.e. any robust model, point has better locality compared to all blue scatter, i.e. all non-robust models.

In particular, we find the improvement of locality is most significant when the locality score is measured

with IG. This observation indicates that the alignment between the globally important features and truly

important features from humans’ perspective benefit most from the improved robustness. On the other

hand, the point-wise important features are benefited least.

Finding II: Improved Robustness Leads to Improved Locality. Using the green arrows, we see that

the locality score measured with IG and BIG is improved as the ERA is improved. In particular, the

improvement of locality is more obvious when measured with BIG. However, the locality measured with

SM does not improve much as the model becomes more robust. This observation indicates that point-wise

important features are less sensitive to the change of ERA, compared to globally and locally important

features. Taking Finding II together with I, point-wise important features are influenced by the robustness

of the model but such influence is limited. The conclusion is not surprising, as humans ourselves are very

insensitive to infinitesimal changes made to small pixels in an 224×224 image and there is almost no such

pixel, if added with infinitesimal noises, that would instantly change our response to the label of the input.
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In summary, Figure 3.4 provides empirical evidence that robust models have higher locality compared

to non-robust ones, and the higher the robustness the better the locality.

3.3.2 Attributions Better Capturing Boundaries in Robust Models

In Figure 3.2, we find that BIG has higher locality scores on F1-score compared to SM and IG, the gap

of which becomes smaller in robust models (see Figure 3.4) than them in the standard (i.e. non-robust)

models. It suggests that importance scores measured on a point-wise and global neighborhood are more

similar to those measured in a local neighborhood in the robust models. In Figure 2.2 we have shown that

gradients on the input of interest are probably very dissimilar to the normal vectors of the nearby decision

boundaries because of the non-linearity of the neural networks. However, the observation of the small

gap of locality between IG and BIG in robust models in Figure 3.4 seems to be a counter-example to the

motivation of Figure 2.2. Consequently, we have to hypothesize that in the robust model, the local geometry

of the model’ output is more smooth, which therefore is much similar to a linear model compared to that

in a non-robust model. This hypothesis should explain why IG is similar to BIG in robust networks.

To verify our hypothesis between robustness and the similarity of attributions, we run an empirical

experiment in this section. BIG is a boundary counterpart of IG. Similarly, we have defined Boundary-based

Saliency Map (BSM, Definition 6), a boundary counterpart for SM. The reason why we do not directly

measure the similarity between SM and BIG is that by definition BG aggregates multiple normal vectors of

decision boundaries while SM should only correspond to one of them. What we really want to show is

that the gradient on the input (i.e. SM) is similar to the normal vector of the nearest decision boundary

(i.e. BSM) and the average of gradients (i.e. IG) is also similar to the average of normal vectors of nearby

decision boundaries (i.e. BIG). Therefore, SM-BSM and IG-BIG pairs are better fits here. We use ℓ2 distance

as a similarity measurement.

For the dataset and models used in this section, we use one standard ResNet50 and one robust

ResNet50 with ϵ = 0.3 in the training under an ℓ2-norm-bounded adversary on CIFAR-10 (Krizhevsky

et al.) dataset. On ImageNet, we use one standard ResNet50 and three robust ResNet50s trainind with

ϵ = 3.0(ℓ2), ϵ = 4/255(ℓ∞) and ϵ = 8/255(ℓ∞). These models are chosen over others because they are

publicly available2. Results are shown in Table 3.1.

In Table 3.1, we find SM-BSM and IG-BIG are obviously smaller in the robust models than those in

the standard ones. because for ℓ∞ case we have two values of ϵ, we see that a higher ϵ, which is more

robust, indicates a lower ℓ2 distance between attributions. Particularly, using ℓ2 norm and setting ϵ = 3.0

2https://github.com/MadryLab/robustness (Engstrom et al., 2019).

https://github.com/MadryLab/robustness
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CIFAR10 standard ℓ2|0.5

SM-BSM. 59.96 1.23
IG-BIG 31.22 2.73

ImageNet standard ℓ2|3.0 ℓ∞| 4
255 ℓ∞| 8

255

SM-BSM 8.48 0.41 2.25 1.61
IG-BIG 17.07 0.69 1.74 1.45

Table 3.1: ℓ2 differences of SM-BSM and IG-BIG for standard and robust models. The heading of each
column reports the respective training epsilon and the corresponding ℓp norm constraint

are most effective on ImageNet to have small SM-BSM and IG-BIG distances, compared to ℓ∞ norm bound.

One possible explanation is that the ℓ2 space is special because training with ℓ∞ bound may encourage

the gradient to be more Lipschitz in ℓ1 because of the duality between the Lipschitzness and the gradient

norm, whereas ℓ2 is its own dual.

3.3.3 Theoretical Justifications for Attribution Similarity

In this section, we provide two theoretical justifications (Proposition 1 and Theorem 1) on why attributions

look similar to their boundary-counterparts i.e. those normal to the nearby decision boundaries.

Lipschizt Gradients. Recent work has proposed using the Lipschitz continuity of an attribution method

to characterize the difference between the attributions of an input x and its neighbors within a ℓp ball

neighborhood (Definition 12) (Wang et al., 2020c). This naturally leads to Proposition 1, which states that

the difference between the saliency map at input and the correct normal to the closest boundary segment is

bounded by the distance to that segment.

Definition 12 (Attribution Robustness) An attribution method A(x) is (λ, ϵ)-locally robust at the evaluated

point x if

∀x′, ∥A(x′)− A(x)∥p ≤ ϵ =⇒ ∥A(x′)− A(x)∥p ≤ λ∥x′ − x∥p.

Proposition 1 Suppose that f has a (λ, ϵ)-robust Saliency Map AS at x, x′ is the closest point on the closest

decision boundary segment to x and ∥x′ − x∥p ≤ ϵ, and that n is the normal vector of that boundary segment. Then

||n− AS(x)|| ≤ λ∥x− x′∥.

Proposition 1 therefore provides the following insight: for networks that admit robust attributions (Chen

et al., 2019; Wang et al., 2020c), the Saliency Map is a good approximation to the boundary vector. As prior

work has demonstrated the close correspondence between robust prediction and robust attributions (Cha-
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lasani et al., 2020; Wang et al., 2020c), this in turn suggests that explanations on robust models will more

closely resemble boundary normals.

Gradients in Randomized Smoothing. Proposition 1 abstracts a robust model with Lispchizt gradients

after robust training. Another way to obtain a robust model is to use post-processing techniques like

randomized smoothing (Cohen et al., 2019b) (Definition 13).

Definition 13 (Randomized Smoothing Cohen et al. (2019b)) For a model F : Rd → [m], its randomized

smoothing model Fσ is

Fσ(x) = arg max
c
{Pr[F(x + ϵ) = c]},

where ϵ ∼ N (0, Iσ2) and N is a Gaussian distribution.

The robustness guarantee randomized smoothing provides is provable with a failure probability τ, which

is referred to that the local robustness is guaranteed with a radius ϵ as a function of the model’s output and

the standard deviation σ of the used noise distribution in Equation 3.2. The failure probability τ, i.e. the

probability the guarantee holds but there is actually an undetected adversarial example, decreases when it

uses more samples to empirically approximate the probability function in Definition 13.

In particular, we prove the following Theorem 1, showing that for a single-layer network, the Saliency

Map of the smoothed model is close to the Saliency Map of the original model up to the standard deviation

of the noise used to smooth the model.

Theorem 1 Let m(x) = ReLU(Wx) be a one-layer network and its smoothed counterpart, mσ(x), introduced in

Definition 13. Let Aσ
S(x) be the Saliency Map for mσ(x). Given two points x, x′ ∈ Rd such that mσ(x) = mσ(x′),

we have the following statement holds:

∥Aσ
S(x)− Aσ

S(x′)∥ ≤ λa (3.2)

where λσ is monotonically decreasing w.r.t σ.

Applying to Theorem 1 to the point of the decision boundary xadv, we easily arrive at Corollary 1.

Corollary 1 Let m(x) = ReLU(Wx) be a one-layer network and its smoothed counterpart, mσ(x). Given a point

x, its closest neighbor xadv on the decision boundary and suppose i = mσ(x). If Aσ
S(x), Aσ

S(xadv) are the Saliency

Map for the model mσ w.r.t class i computed at x and x′, then ||Aσ
S(x)− Aσ

S(xadv)|| ≤ λ where λ is monotonically

decreasing w.r.t σ.
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standard 
model

robust 
model

Figure 3.5: Visualizing Saliency Map (SM), Integrated Gradient (IG), and Boundary-based Integrated
Gradient (BIG) on two images to compare standard and robust ResNet50 classifiers.

The Saliency Map of the closest neighbor x′ on the decision boundary in Corollary 1 points to the

same direction as the normal vector of the closest decision boundary we have discussed in the previous

paragraph. Thus, this corollary suggests that when randomized smoothing is used, the normal vector

of the closest decision boundary segment and the saliency map are similar, and this similarity increases

with the smoothness of the model’s boundaries. We think the analytical form for deeper networks exists

but its expression might be unnecessarily complex due to that we need to recursively apply ReLU before

computing the integral (i.e., the expectation). The analytical result above for one-layer networks and

empirical validations for deeper nets in Table 3.1, if taken together, show that attributions and boundary-

based attributions are more similar in a smoothed model.

3.4 Low-Quality Attributions Indicating Feature Misalignment

Robust models are much more perceptibly aligned with humans as evidenced by locality metrics. Indeed,

if overlaying attributions on the same images with standard and robust ResNet50 classifiers (Figure 3.5),

we see that attributions from the robust models are more semantically meaningful. The improvement on

attributions is obvious to tell based on our common sense without locality metrics or bounding boxes.

The first take-away from our numerical evaluation on locality metrics and Figure 3.5 is that the perceived

"low-quality" of gradient attributions, which has been justified to faithfully return important features to the

model, is, in fact, demonstrating the feature misalignment of the underlying model. Thus, we should be

skeptical about the (un)faithfulness of a feature explanation if it looks much more visually sharper than

the faithful ones on models that do not always agree with humans, e.g. a non-robust classifier. It is hard

to believe that a model that always fails on images that look benign to humans and only succeeds on a

particular set of images actually takes the same set of features in the image for reasoning.
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The second insight from this chapter is that robustness is an unspecified objective that we should put

into the training if our goal is to obtain a classifier well-aligned with human-like perception. Issues seen

on feature attributions should not lead to techniques that make attributions look better on misaligned

models; instead, the way with a promising and high-quality explanation, in the end, is to have a robust

model to begin with. In Chapter 4 and 5, we pursue this goal by discussing a set of techniques to make the

underlying model adversarially robust against norm-bounded attacks.



Chapter 4

Training Empirically Robust Networks

Section 3.3 demonstrates the promise of improving the locality of deep models by improving their

robustness against norm-bounded adversaries. In this section, we hereby focus on the way to further

improve the state-of-the-art empirical robust accuracy (ERA) and leave the discussion on improving

verifiable robust accuracy (VRA) in Section 5. These two topics are separated because training methods that

only enforce empirical robustness are often hard to verify, e.g. even if the point is robustness the certifier

may terminate with time-out or an unknown status about the robustness, without calibrating the loss with

a particular certification process. This section is organized as follows. In Section 4.1, we discuss several

robust training schemes in the prior works. Section 4.2 reveals a bottleneck of these robustness-aware

training methods – overfitting to the training data, which is even worse than that in the standard (i.e.

non-robust) training. To address the robust overfitting, this thesis proposes a new regularizer for existing

robust training losses based on Probably Approximately Correct Bayesian (PAC-Bayesian) bound (Alquier,

2021; Catoni, 2004; Germain et al., 2009; McAllester, 1999; Shawe-Taylor & Williamson, 1997), a learning

theory that upper-bounds the loss over distribution with the training loss and an optimizable bound. We

provide greater details about our use of PAC-Bayesian bound in Section 4.3 and the resulting method, TrH

Regularization, that addresses robust overfitting, in Section 4.4.

4.1 Adversarial Training

The goal of adversarial training is to train a deep network that is robust against ℓp norm-bounded noises,

i.e. local robustness (Definition 11). Recall that in Chapter 2 we use f : Rd → Rm to denote a neural

network that takes an input x ∈ Rd and outputs a logit vector for m classes. In addition, we further denote

the weights of f as θ so f (x; θ0) differ from f (x; θ1) by the values of the weights. If we use l to denote a

loss function that measures the quality of our prediction, i.e. an identity function, and Dn for a dataset of

42
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n i.i.d instances of (xi, yi) sampled from the true data distribution D, the standard training (L̂) and test

objective (L) are equals to

L̂(θ, Dn) =
1
n ∑

(x,y)∈Dn
l((x, y), θ),

and L(θ,D) = E(x,y)∼D l((x, y), θ).

The standard training and test loss are replaced with their robust counterparts R̂, R in adversarial

training as follows

R̂(θ, Dn) =
1
n ∑

(x,y)∈Dn
max
||δ||≤ϵ

l((x + δ, y), θ),

and R(θ,D) = E(x,y)∼D max
||δ||≤ϵ

l((x + δ, y), θ).

Because using an identity function for l results in undifferentiable loss, various surrogates can be

proposed in the literature. In this thesis, we focus on the following two well-known methods: adversarial

training (Madry et al., 2017), denote AT (Definition 14), and TRADES (Zhang et al., 2019b) (Definition 15).

AT is a classical method in enforcing robustness; while TRADES achieves state-of-the-art robust accuracy

on CIFAR-10 and ImageNet (Gowal et al., 2021).

Definition 14 (Adversarial Training (AT) (Madry et al., 2017)) Given a network f with parameter θ, a train-

ing set Dm, the bound of noise ϵ and norm || · ||p, AT minimizes the following objective w.r.t θ.

R̂AT(θ, Dn) =
1
n ∑

(x,y)∈Dn
max
||δ||p≤ϵ

CE((x + δ, y), θ),

where CE((x + δ, y) is the Cross Entropy between f (x + δ; θ) and (the one-hot vector of) y.

Definition 15 (TRADES (Zhang et al., 2019b)) With the same assumptions in Definition 14 and let softmax(·), kl(·||·)

be the softmax function and KL Divergence, respectively. TRADES minimizes the following objective w.r.t θ.

R̂T(θ, Dn) =
1
m ∑

(x,y)∈Dm

[
CE((x, y), θ) + λt · max

||δ||p≤ϵ
KL((x + ϵ, x), θ)

]
,

where KL((x, x + δ), θ) = kl(s( f (x; θ))||s( f (x + δ; θ)) and λt is a penalty hyper-parameter, which balances the

clean accuracy and the robustness.

AT is probably the most straight-forward way of encouraging the model to be robust: it adds adversarial

noise to the input on the fly and rewards the network if it predicts a correct label for the adversarial

example x + δ. Unlike AT, TRADES rewards the network not only for making correct prediction (i.e. the

CE part) on the clean input but also for making consistent prediction for all points within a ϵ-ball around
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the input (i.e. the KL part). To empirically solve the inner-maximization in both AT and TRADES, the

most frequent choices are PGD (Madry et al., 2017) and Fast Gradient Sign Method (FGSM) (Goodfellow

et al., 2015b; Wong et al., 2020), which take one (i.e. FGSM) or a few steps (i.e. PGD) to maximize the

corersponding loss following the direction of gradients and project the perturbation back to the ϵ-ball.

4.2 Overfitting in Adversarial Training

Rice et al. (2020) observe that the AT and TRADES methods may suffer from severe overfitting. Namely, the

model exhibits higher robustness on the training data compared to the test data. Overfitting on robustness

is even worse than that on the standard accuracy, meaning Rice et al. (Rice et al., 2020) find that the

generalization gap of robustness is larger than the that of clean accuracy.

Prior Works for Alleviating Robust Overfitting. A number of traditional strategies have been applied

to alleviate the overfitting problem in robust training, such as ℓ2 weight regularization, early stop (Rice

et al., 2020), label smoothing, data augmentation (Yun et al., 2019; Zhang et al., 2017) and using synthetic

data (Gowal et al., 2021). Below we describe popular and recent methods that were designed specifically

for adversarial training.

• Stochastic Weight Averaging (SWA). Izmailov et al. (Izmailov et al., 2018) introduces SWA for

improved generalization performance in standard training. SWA maintains an exponential running

average θavg of the model parameters θ at each training iteration and uses the running average θavg

for inference. Namely,

θ(t+1) ← SGD(θ(t)); θavg ← αθavg + (1− α)θ(t+1)

where α is commonly set to 0.995. Recent work has also shown that SWA helps generalization in the

robust training (Gowal et al., 2021) scenario. Note that maintaining the running average requires

additional memory resources.

• Adversarial Weight Perturbation (AWP). Similar to Sharpness-Aware Minimization (Foret et al., 2021),

Wu et al. (Wu et al., 2020) encourages model robustness by penalizing against the most offending

local weight perturbation to the model. Specifically, given a robust loss R̂*(θ, Dn), AWP minimizes

the following objective w.r.t θ:

max
ψ(ξ)≤δawp

R̂*(θ + ξ, Dn) (* denotes either AT or T) (4.1)
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where ψ measures the amount of noise ξ (e.g. ℓ2 norm) and δawp denotes the noise total budget. Note

that solving the inner maximization problem requires at least one additional gradient ascent step in

the parameter space.

• Second-Order Statistic (S2O). Jin et al. (Jin et al., 2022) improve the robustness generalization by

regularizing the statistical correlations between the weights of the network. Furthermore, they provide

a second-order and data-dependent approximation Aθ of the weight correlation matrix. During

training, S2O minimizes the following objective w.r.t θ:

R̂*(θ, Dn) + α||Aθ ||F (* denotes either AT or T) (4.2)

where α > 0 is a hyper-parameter and || · ||F is Frobenius Norm. Computing Aθ involves computing

the per-instance self-Kronecker product of the logit outputs for the clean and adversarial inputs.

This thesis proposes to alleviate robust overfitting from the perspective of learning theory. That is, the

phenomenon of overfitting can be characterized by a PAC-Bayesian bound (Alquier, 2021; Catoni, 2004;

Germain et al., 2009; McAllester, 1999; Shawe-Taylor & Williamson, 1997) which upper-bounds the expected

performance of a random classifier over the underlying data distribution by its performance on a finite set

of training points plus some additional terms. Although several prior works (Gowal et al., 2021; Izmailov

et al., 2018; Jin et al., 2022; Wu et al., 2020) have built upon insights from the PAC-Bayesian bound, none

attempted to directly minimize the upper bound, likely due to the fact that the minimization of their forms

of the PAC-Bayesian bound do not have an analytical solution.

Unlike the PAC-Bayesian bound by Wu et al. (Wu et al., 2020), we rely on a different form of the PAC-

Bayesian bound (Germain et al., 2009), which can be readily optimized using a Gibbs distribution (Germain

et al., 2016a). In addition, we derive a second-order upper bound over the robust test loss. Interestingly, the

resulting bound consists of a regularization term that involves Trace of Hessian (TrH) (Ding et al., 2022) of

the network weights, a well-known measure of the loss-surface flatness. In the following Section 4.3, we

provide greater details on our use of PAC-Bayesian bound to derive a regularization term that better helps

to close the robust generalization gap.

4.3 PAC-Bayesian Bound for Robust Generalization

PAC-Bayesian theory (Alquier, 2021; Catoni, 2004; Germain et al., 2009; McAllester, 1999; Neyshabur

et al., 2017; Shawe-Taylor & Williamson, 1997) provides a foundation for deriving an upper bound of the

generalization gap between the training and test error. Both AWP and S2O plug the robust loss into the

classical bound (Neyshabur et al., 2017) to obtain the following form:
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Theorem 2 (Square-Root-Form PAC-Bayesian Bound (Wu et al., 2020)) Given a prior distribution P on the

weight θ of a network, any τ ∈ (0, 1], a robustness loss R(θ,D) for a data distribution D and its empirical version

R̂(θ, Dn), for any posterior distribution Q of θ, the following inequality holds with a probability at least 1− τ,

Eθ∈QR(θ,D) ≤ Eθ∈QR̂(θ, Dn) + 4

√
1
m

kl(Q||P) + log
2m
τ

. (4.3)

Generally speaking, the goal of PAC-Bayesian learning is to optimize Q on the RHS of Equation 4.3

so as to obtain a tight upper bound on the test error (LHS). However, directly optimizing Equation 4.3

over Q is difficult because of the square root term. Instead of optimizing the RHS, AWP replaces it with

maxξ R̂(θ + ξ, Dn) plus a constant upper bound on the square root term, which is only loosely connected

to the bound. On the other hand, S2O assumes P and Q as non-spherical Gaussian, i.e.

P = N (0, Σp),Q = N (θ, Σq), (4.4)

and show that the square root bound increases as the Frobenius norm and singular value of Σq increase.

To overcome the complexity of the square root term, they approximate it with ∥Aθ∥F as in Equation 4.2.

As mentioned earlier, neither AWP (Wu et al., 2020) nor S2O (Jin et al., 2022) minimizes the PAC-Bayesian

bound directly, likely due to the complicating square-root term in Equation 4.3. However, Equation 4.3 is

only one instance out of PAC-Bayesian bounds defined in Germain et al. (Germain et al., 2009). According

to their framework, there is also a linear-form of the bound related to Bayesian inference which can be

analytically minimized with the aid of a Gibbs distribution (Ding et al., 2022; Germain et al., 2016b; Rothfuss

et al., 2021). We leverage this linear-form of the PAC-Bayesian bound, and adapt it for bounding the

robustness gap:

Theorem 3 (Linear-Form PAC-Bayesian Bound (Germain et al., 2016b)) Under the same assumptions as in

Theorem 2, for any β > 0, with a probability at least 1− τ,

Eθ∈QR(θ,D) ≤ Eθ∈QR̂(θ, Dn) +
1
β

kl(Q||P) + C(τ, β, m), (4.5)

where C(τ, β, m) is a function independent of Q.

Here β is a hyper-parameter that balances the three terms on the RHS. A common choice is β ∝ m, i.e.

the size of the dataset (Ding et al., 2021; Germain et al., 2016b). Recently, (Ding et al., 2022) proposed to set

P and Q to univariate Gaussians and used a second-order approximation to estimate the PAC-Bayesian

bound. Applying a similar technique, we introduce Theorem 4 (see Appendix. D.1 for the proof) which

minimizes the RHS of Inequality 4.5.
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Theorem 4 (Minimization of PAC-Bayesian Bound) If P = N (0, σ2
0 ), and Q is also a product of univariate

Gaussian distributions, then the minimum of Inequality 4.5 w.r.t Q can be bounded by

min
Q

Eθ∈QR(θ,D) ≤ min
Q
{Eθ∈QR̂(θ, Dn) +

1
β

kl(Q||P)}+ C(τ, β, m)}

= min
θ
{R̂(θ, Dn) +

||θ||22
2βσ2

0
+

σ2
0

2
Tr(▽2

θ R̂(θ, Dn))}+ C(τ, β, m) + O(σ4
0 ). (4.6)

Assuming that σ2
0 = 1/d is the variance of the initial weight matrices where d is the input feature

dimension, then O(σ4
0 ) = O(d−2). Theorem 4 considerably simplifies the optimization problem from one

over the space of probability density functions Q to one over model weights θ. Moreover, the resulting

bound (RHS of Eq. 4.6) contains the Trace of Hessian (TrH) term Tr(▽2
θ R̂(θ, Dn)) of the robust loss, which

sums the loss surface curvatures in all directions. For a convex loss, the Hessian is positive semi-definite

(PSD) in which case trace minimization leads θ to a flatter region of the loss surface. Although in general,

our Hessian is not PSD, empirically we find that its largest eigenvalue has a much larger magnitude than

the least ones (Alain et al., 2018) and that trace minimization correlates with minimizing the standard

deviation of the eigenvalues so that the overall curvature is effectively decreases (Example 1 to follow in

Section 4.4).

Remark 1 (Relation Between minQEθ∈QR(θ,D) and minθ R(θ,D)) Compared to minQEθ∈QR(θ,D) where

we minimize the mean and variance of the Gaussian posterior distribution family, directly minimizing the test loss

over a deterministic θ is probably more related to one’s goal of training. Since the PAC-Bayesian bound only captures

the behavior of a distribution, it is technically unreliable with the current bound, i.e. Theorem 4, used in this thesis.

However, we notice that the optimal variance is given in the proof of Theorem 3 (Appendix ??), which takes the form

of,

σ2∗
n =

(
1
σ2

0
+ β

∂2R̂
∂θ2

n

)−1

.

Since β is proportional to the number of data examples m, the variance σ2∗
n becomes very small for any reasonably

sized datasets (e.g. m = 60K in CIFAR, m = 1M in ImageNet). The resulting posterior, in practice, is a “narrow"

Gaussian. So one can simply take its optimal mean as a point estimator of the true posterior, i.e. minθ R(θ,D),

during the test time.

The RHS of Eq. 4.6 in Theorem 4 provides a training objective function that bounds the optimal test error

up to a constant. However, evaluating and minimizing the bound in Eq. 4.6 requires computing the Trace

of Hessian (TrH) term. Unfortunately, computing the Hessian directly by applying auto-differentiation

twice is infeasible for a large deep network. Another solution is to apply Hutchinson’s method (Avron &
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Toledo, 2011) to randomly approximate the TrH, however, the variance of the resulting estimator is too high

and it ends up being too noisy for training in practice. Instead, we propose to restrict TrH regularization to

the top layer of the deep network only. Although this restriction brings approximation error to the bound,

it has two benefits. First, the TrH on the top layer has simple analytical expressions (details to follow in

Section ??). Second, we show that the top-layer TrH regularization effectively regularizes the TrH of the

entire network as well (details to follow in Section ??).

4.4 Top-layer TrH Regularization for AT and TRADES

Recall that for a network f we use θ to denote its parameter. In this section, we additionally use the

following decomposition, i.e.

θ = {θt, θb},

to separately denote θt as the weights of the top layer and θb as the weights of the remaining (lower)

network. In this case, the logits of f can thus be expressed as

f (x; θ) = f ( f (x; θb); θt) = θ⊤t f (x; θb)

where f (x; θb) is the penultimate layer feature. Furthermore, we define

h(x; θ) = softmax( f (x; θ))− softmax( f (x; θ))2.

Now, we present the analytical forms of the top-layer TrH w.r.t the AT and the TRADES in Proposition 2

and 3.

Proposition 2 (TrH for AT) Given a training dataset Dn and the adversarial input example x′ for each example x,

the top-layer TrH of the AT loss (Definition 14) is equal to

Tr(▽2
θt

R̂AT(θ, Dn)) =
1
m ∑

(x,y)∈Dm
TrHAT(x′; θ),

where TrHAT(x′; θ) = || f (x′; θb)||22 · 1⊤h(x′; θ).

Proposition 3 (TrH for TRADES) Under the same assumption in Proposition 2, the top-layer TrH of the TRADES

loss (Definition 15) is equal to

Tr(▽2
θt

R̂T(θ, Dn)) =
1
m ∑

(x,y)∈Dm
TrHT(x, x′; λt, θ),

where, TrHT(x, x′; λt, θ) = || f (x; θb)||22 · 1⊤h(x; θ) + λt|| f (x′; θb)||22 · 1⊤h(x′; θ). (4.7)
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Algorithm 1: TrH Regularization for Training Adversarial Robust Network
Hyper-parameters: The ℓ2-norm penalty for weights γ, the TRADES penalty λt and the TrH penalty λ.
Inputs: A batch B of examples, a loss_type =’AT’ or ’TRADES’, the noise budget δ, and a network

f (x; θ) = θ⊤t f (x; θb).
Output: The training objective at the current iteration.

1 R← 0;
2 foreach (x, y) ∈ B do
3 x′ ← PGD_InnerLoop(x, y, δ, LossType)
4 z′ ← f (x′; θb), h′ ← softmax(θ⊤t z′)− softmax(θ⊤t z′)2; // This step computes the penultimate feature

z′ and the softmax gradient h′ on the adversarial input x′.
5 if LossType == ‘AT’ then
6 R← R + CE((x′, y), θ) + λ(||z′||22 · 1⊤h′);
7 else if LossType == ‘TRADES’ then
8 z← f (x; θb), h← softmax(θ⊤t z)− softmax(θ⊤t z)2; // TRADES needs the z and h from the benign x.

9 R← R + CE((x, y), θ) + λtkl(softmax(θ⊤t z)||softmax(θ⊤t z′)) + λ(||z||22 · 1⊤h + λt||z′||22 · 1⊤h′);
10 end
11 end
12 return 1

|B|R + γ||θ||22

To obtain Eq. 4.7, we stopped the gradient on the KL in Definition 15 with respect to the clean logits f (x; θ),

because we find it is more stable for training, otherwise, there would be an additional regularization term

G(x, x′; θ) in the TrHT (see more details in the Appendix D.1). With Proposition 2 and 3, we now present

the complete training objective in Algorithm 1. Notice that, to simplify hyper-parameter notations, we

re-parameterize γ
def
= 1/2βσ2

0 and λ
def
= σ2

0 /2 in the algorithm.

Remark 2 (Compared to Sharpness-Aware Regularization (SAM) (Foret et al., 2021)) Although related, our

work differs from SAM (or AWP) with regards to how PAC-Bayesian theory and sharpness are positioned. SAM

is motivated by empirically reducing the sharpness of the training loss landscape, whereas our work is theoretically

motivated and directly minimizes the PAC-Baysian bound of the (adversarial) loss w.r.t the Gaussian posterior so as

to reduce the generalization error. Specifically, the sharpness measure TrH emerges as a result of that optimization.

Although the PAC-Bayesian bound was also considered as a theoretical motivation for SAM, it is unclear whether

SAM optimization indeed reduces the PAC bound. For example, Wen et al. (Wen et al., 2022) shows that SAM

is equivalent to minimize the trace of Hessian (TrH) when batch size is 1, whereas our Theorem 4 arrives at TrH

minimization regardless of the batch size.

Although our TrH regularization is restricted to the top layer only, the gradient back-propagates to the

entire network through the penultimate layer features. This motivates the following research question:

What effect does top-layer TrH regularization have on the TrH of the entire network?

To answer this question, we take a two-step approach. First, we experiment with a small 3-layer network

on the synthetic Two-Moon dataset (Figure 4.1), provided that computing the full network Hessian is
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Figure 4.1: Visualization of Two Moons dataset. The task is to classify the points into two classes (red and
green).

inexpensive. Subsequently, we provide a theorem that can be used to bound the Trace of Hessian of the full

network with that of the top layer only.

Example 1 (Two Moons) We use 500 training examples, where x ∈ R2 and y ∈ {0, 1} from the Two Moon dataset

(Figure 4.1). We train a small network with the AT loss using the following settings:

• Network. We use a dense network Dense(100)-ReLU-Dense(100)-ReLU-Dense(2).

• Training without Regularization (Standard). We train the network with AT(base), such that it is robust in

an ℓ∞ ball of size 0.02 with 1 PGD step. We use a momentum-SGD with learning rate 0.1 for 100 epochs.

• Training with Top-Layer TrH Regularization (Top). We further add the TrH of the top layer as a

regularization term in the loss. We compute the TrH at the top layer using Proposition 2. The regularizing

coefficient for the top-layer TrH is 0.5 (i.e. loss = AT + 0.5 ∗ TrHtop) as we find it needs a stronger penalty

due to the lack of TrH from other layers.

• Training with Full TrH Regularization (Full). In additional to the Standard setup, we add the TrH of the

full network as a regularization term in the loss. We numerically compute the Hessian and its trace. The

regularizing coefficient for the full-network TrH is 0.05 (i.e. loss = AT + 0.05 ∗ TrH f ull).

Throughout the training process (x-axis), we evaluate the TrH of the entire network (y-axis) with a numerical

approach (twice differentiation) and plot the sum of Hessian eigenvalues, i.e. TrH, and the standard deviations of

eigenvalues in Figure 4.2.

Focusing on the top-left plot in Figure 4.2, we see that the TrH decreases across time with standard

training (blue), but at the same time, the full-network and top-layer TrH regularization decrease it even

further. In particular, top-layer TrH regularization (orange) is nearly as effective as directly regularizing
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All Layers Layer 1 

Layer 2 Layer 3 

Figure 4.2: The figure shows pairs of plots for the sum and the standard deviation of the Hessian matrix
eigenvalues. The top-left pair corresponds to the Hessian of all layers, while the rest to each of the three
layers separately, with Layer 3 being the top layer (note that the sum of eigenvalues is exactly the trace of
Hessian). As can be seen on the top-left , the sum and standard deviation decrease in standard training
(blue) and moreover, this effect is amplified by direct TrH regularization with similar results for full
network regularization (green) and top-layer regularization (orange). This similarity can be explained by
our Theorem 5

the TrH for all layers (green) after the 60-th epoch. The standard deviation plots (on the right side of each

TrH plot) show a decrease in the standard deviation, which implies there is a contraction effect on the

eigenvalues of the Hessian, with both positive and negative values approaching towards 0. This rules out

the possibility that the TrH reduction comes from an increase in the magnitude of the negative eigenvalues.

In fact, TrH regularization effectively contracts the magnitude of all eigenvalues and leads to a smoother

region in the loss surface. We further plot the TrH and standard deviation of Hessian eigenvalues for each

individual layer respectively (where Layer 3 is the top layer). Except for the first layer, whose eigenvalues

seem to be small from the onset, the eigenvalue contraction effect is evident as training progresses, with a

stronger and similar effect for both TrH regularization settings.

We provide Example 1 as an empirical justification of our use of top-layer TrH regularization. Next,

we provide a theoretical justification for the impact of top-layer TrH regularization on the layers below.

Intuitively, our Theorem 5, establishes an inductive relation between the TrH of the consecutive layers in

a feedforward neural network with ReLU activation and CE loss, a common building block in AT and

TRADES training.
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Theorem 5 (Inductive Relation in TrH) Suppose f : Rd → Rm is a feed-forward network with ReLU activation.

For the i-th layer, let W(i) be its weight and I (i)x be its input evaluated at x. Thus, TrHCE
x (W(i−1)), i.e. TrH evaluated

at x using a CE loss w.r.t W(i−1), is equal to

TrHCE
x (W(i−1)) = ||{I (i−1)

x }||22 ∑
k,d∈P(i)

{H(i)}k,d

where {H(i)}k,di
=

[
∂{gθ(x)}k

∂{I (i)x }di

]2

· {h(x, θ)}k

P(i) = {di|{I
(i)
x }di

> 0}

and the following inequality holds for any H(i),H(i+1):

max
k,di
{H(i)}k,di

≤ max
k,di+1
{H(i+1)}k,di+1

· ||W(i)||21. (4.8)

Put simply, the max-norm of the Hessian of each layer forms an upper bound for the max-norm of the

layer below it (times a scalar). Therefore, regularizing the TrH of the top layer alone implicitly regularizes

the Hessian of the layers below it. This effect explains the phenomenon observed in Example 1.

Furthermore, the operator norm ||W(i)||21 of weights in Eq. 4.8 makes an interesting connection between

TrH minimization and robust training. Roth et al. (Roth et al., 2020) show that robust training is an implicit

way of regularizing the weight operator norm. Moreover, directly minimizing the operator norm is a

commonly used technique in training certifiable robust networks (Huang et al., 2021a; Leino et al., 2021b),

a stronger version of the robustness guarantee targeted in this paper. Thus, the combination of robustness

training and top-layer regularization results in an implicit regularization on TrH for internal layers.

4.5 Evaluations

In this section, we evaluate TrH regularization (Algorithm 1) over three image classification benchmarks

including CIFAR-10/100 and ImageNet and compare against the robust training baselines, i.e. SWA (Gowal

et al., 2021; Izmailov et al., 2018), AWP (Wu et al., 2020), and S2O (Jin et al., 2022), described in Section 4.2.

We begin with the setups for our experiments.

4.5.1 Experiment Setup

Datasets and Threat Model. For CIFAR-10/100, we choose the standard ϵ = 0.031(≈ 8/255) of the

ℓ∞ ball to bound the adversarial noise. In addition, Gowal et al. (Gowal et al., 2021) has reported that

using synthetic images from a DDPM (Ho et al., 2020) generator can improve the robustness accuracy for
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the original test set. Thus, we also add 1M DDPM images to CIFAR-10/100 (these images are publicly

availabe (dee)). For ImageNet, we choose ϵ = 3.0 for the ℓ2 and ϵ = 0.0157(≈ 4/255) for the ℓ∞ ball,

respectively. We do not use extra data for ImageNet. The chosen ϵs follow the common choices in the

literature (Gowal et al., 2021; Jin et al., 2022; Madry et al., 2017; Wu et al., 2020). We report the test accuracy

evaluated with benign images and adversarial images generated by AutoAttack (Croce & Hein, 2020a)

(AutoPGD+AutoDLR), which is widely used in the literature (Gowal et al., 2021; Jin et al., 2022; Wu et al.,

2020).

Network Architectures. We use Vision Transformer (ViT) (Dosovitskiy et al., 2021) through all experiments

because of its success on multiple tasks over existing architectures. Specifically, we report the results

of ViT-L16, Hybrid-L16 for CIFAR-10/100 and ViT-B16, ViT-L16 for ImageNet (additional results and

architecture details can be found in Appendix D.5). We initialize the weights from a pre-trained checkpoint

on ImageNet21K (goo). Notice that the resolution of the CIFAR images (32× 32) are too small to correctly

align with the pre-trained kernel of the first layer. To address this issue, we down-sample the kernel of the

input layer following the receipt proposed by Mahmood et al. (Mahmood et al., 2021).

Methods. We train the models using AT and TRADES losses, together with the following defenses: (1)

base: no regularization; (2) AWP (Wu et al., 2020); (3) SWA (Izmailov et al., 2018); (4) S2O (Jin et al., 2022);

and (5) our Algorithm 1 (TrH). We are interested in the baselines defenses because of their connections to

the PAC-Bayesian bound or the loss flatness. During training, the model was partitioned over four Google

Cloud TPUv4 chips (Jouppi et al., 2017) for the base and TrH methods, and eight chips for AWP, S2O, and

SWA as they consume more HBM memory.

Hyperparameter Selection. Training robust ViTs can be challenging due to a large number of hyper-

parameters. We use two steps for hyperparameter selection. For the choice of common hyper-parameters,

e.g. batch size, patch size, training iterations, and etc. (a full list is included in Appendix D.2), we first do a

large grid search and select values that produce the best results on TRADES(base). This step is referred to

as pre-tuning and is done per dataset. After the first step, where the common hyper-parameters are locked,

we tune and report the best results after trying different sets of method-specific hyper-parameters, e.g., the

norm bound of weight noises in AWP and λ for TrH. Appendix D.3 provides a full list of hyper-parameters

we use to produce our main results in Table 4.1.
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ℓ∞(ϵ = 8/255) ViT-L16 Hybrid-L16
SE= ±0.5% CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Defense Clean(%) ERA(%) Clean (%) ERA(%) Clean(%) ERA(%) Clean (%) ERA(%)

AT(base) 87.4 60.8 64.3 31.7 88.0 61.7 64.2 31.8
AT(SWA) 88.0 61.7 62.5 31.7 86.5 57.2 63.6 30.8
AT(S2O) 87.1 60.2 64.9 31.7 88.7 61.6 64.3 31.8
AT(AWP) 88.5 62.4 63.3 32.6 88.5 61.5 63.9 32.5
AT(TrH) 87.0 61.7 62.5 32.8 88.0 61.0 63.8 32.4

TRADES(base) 85.2 60.3 62.0 31.4 85.9 60.8 61.3 30.6
TRADES(SWA) 85.9 60.7 61.5 32.0 84.3 59.4 62.3 29.9
TRADES(S2O) 87.4 61.6 62.4 31.6 87.2 61.5 65.0 31.9
TRADES(AWP) 85.3 60.8 63.0 32.2 84.5 59.8 61.4 32.1
TRADES(TrH) 86.4 61.4 62.0 32.1 87.4 61.7 66.4 34.1

ImageNet ViT-B16 ViT-L16
SE= ±0.2% ℓ∞(ϵ = 4/255) ℓ2(ϵ = 3.0) ℓ∞(ϵ = 4/255) ℓ2(ϵ = 3.0)
Defense Clean(%) ERA(%) Clean (%) ERA(%) Clean(%) ERA(%) Clean (%) ERA(%)

AT(base) 72.2 39.0 71.0 39.3 75.4 44.1 73.9 43.5
AT(SWA) 72.3 40.0 71.5 39.8 75.2 44.3 74.3 43.8
AT(S2O) 72.0 39.0 71.4 39.3 75.4 46.2 76.3 46.4
AT(AWP) 71.3 39.5 70.5 39.3 74.5 44.0 73.8 44.0
AT(TrH) 71.3 42.2 71.6 42.4 75.8 48.8 74.2 47.0

TRADES(base) 69.2 39.3 67.8 39.7 77.8 40.9 77.1 41.5
TRADES(SWA) 69.5 39.7 68.1 40.0 72.7 44.5 71.1 44.2
TRADES(S2O) 70.6 39.3 69.8 39.7 73.7 43.6 72.5 44.0
TRADES(AWP) 65.8 38.6 64.5 38.3 68.5 43.2 67.2 42.7
TRADES(TrH) 65.3 41.9 66.4 41.6 70.1 48.9 68.9 47.3

Table 4.1: Clean: % of Top-1 correct predictions. ERA: % of Top-1 correct predictions under AutoAttack. A
max Standard Error (SE) Stark & University of California (2005) =

√
0.5 ∗ (1− 0.5)/n (n as the number of

test examples) is computed for each dataset. The best results appear in bold. Underlined results are those
that fall within the SE range of the result and are regarded roughly equal to the best result.

4.5.2 Main Results.

In Table 4.1, we report the robust test accuracy using different types of defenses. The top results are

highlighted in bold font. To measure the significance of an improvement, we calculate the maximum

standard error (SE) (Stark & University of California, 2005) =
√

0.5 ∗ (1− 0.5)/n (where n denotes the

number of test examples) for each dataset. Thus, the accuracy of a certain model is regarded a silver result

asilver, if its SE interval overlaps with the that of the top result atop. Namely, atop − SE ≤ asilver + SE.

On CIFAR-10/100, a significant improvement is at least 1% according to SE. Therefore, based on

Table 4.1, the performance differences among the methods are relatively small. Nevertheless, TrH attains

either the top result (in 3 instances) or the silver result (in 5 instances) across all eight instances. In

comparison, AWP is the second best with 3 top and 3 silver; S2O has 1 top and 4 silver; SWA has 3

silver; and the base has 1 top and 3 silver. Notably, Hybird-L16+TRADES(TrH) achieves the highest robust
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Figure 4.3: A plot of the Autoattack accuracy (ERA %) against λ (TrH Penalty coefficient) when training on
ImageNet with TrH Regularization in the ℓ∞ case.

accuracy (34.1%) on CIFAR-100 which beats all other baselines by at least 2%.

On ImageNet, a significant improvement is at least 0.4% according to SE. We observe that TrH

regularization outperforms the other baselines across the board. Using AT(TrH), we set a new state-of-the-art

robust accuracy of 48.8%, at ℓ∞(4/255) and 47.0% at ℓ2(3.0) with a ViT-L16 model. Specifically, in the case

of ℓ∞, 48.8% is an improvement of 4.7% compared to the basic setup AT(base). In TRADES(TrH), although

the robust accuracy is even slightly higher than AT, the clean accuracy is lower. This is due to the choice

of λt = 6, which strongly favors robustness over clean accuracy. As we reduce λt to 1, we obtain a better

balance of (clean, ERA) accuracy of TRADES(TrH) at (78.7, 46.7) for l∞ and (77.1, 45.2) for l2.

Summary of Results in Table 4.1 The results in Table 4.1 demonstrate that training with TrH regularization

either matches or outperforms the robust accuracy of the existing methods. In fact, the gains of TrH

regularization are wider on the larger ImageNet dataset compared to on CIFAR-10/100, where several

methods show equivalent performance (per Standard Error analysis). This suggests that future work in

robust adversarial training should move beyond the CIFAR benchmarks to larger-scale tasks.

Sensitivity to λ. To study the sensitivity of λ to the training in TrH regularization, we train a ViT-L16

model over the ImageNet dataset and vary the choice of λ. Figure 4.3. plots the ERA accuracy (y-axis)

against the different choices of λ (x-axis) with all other setups fixed. The plot shows that λ = 5× 10−4

attains the highest AutoAttack accuracy (i.e. ERA) for both AT and TRADES losses with little degradation

in the range of [10−4, 10−3].

Training Efficiency. To compare the computational efficiency of the various methods, we report the peak

memory usage and runtime performance (i.e., images processed per second; the higher the better) in
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Defense Mem.(MB/chip) Img/sec/chip

AT(base) 5.0× 103 5.5
AT(TrH) (ours) 5.0× 103 5.2
AT(SWA) 5.6× 103 4.4
AT(S2O) 8.0× 103 5.2
AT(AWP) 6.8× 103 3.7

Table 4.2: Peak memory usage and run-time reports measured when training CIFAR-10 using a ViT-L16
with a batch size of 32. Training is paralleled on two NVIDIA RTX chips. Lower memory usage and higher
img/sec/chip are more efficient.

ℓ∞(ϵ = 8/255) ViT-L16 Hybrid-L16
SE= ±0.5% CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Defense Clean(%) ERA(%) Clean (%) ERA(%) Clean(%) ERA(%) Clean (%) ERA(%)

AT(AWP) 88.5 62.4 63.3 32.6 88.5 61.5 63.9 32.5
AT(AWPT) 88.9 62.2 63.9 31.9 87.5 61.3 63.3 33.0
AT(TrH) 87.0 61.7 62.5 32.8 88.0 61.0 63.8 32.4

TRADES(AWP) 85.3 60.8 63.0 32.2 84.5 59.8 61.4 32.1
TRADES(AWPT) 85.3 60.5 62.0 32.2 85.8 61.4 65.7 33.8
TRADES(TrH) 86.4 61.4 62.0 32.1 87.4 61.7 66.4 34.1

ImageNet ViT-B16 ViT-L16
SE= ±0.2% ℓ∞(ϵ = 4/255) ℓ2(ϵ = 3.0) ℓ∞(ϵ = 4/255) ℓ2(ϵ = 3.0)
Defense Clean(%) ERA(%) Clean (%) ERA(%) Clean(%) ERA(%) Clean (%) ERA(%)

AT(AWP) 71.3 39.5 70.5 39.3 74.5 44.0 73.8 44.0
AT(AWPT) 71.6 40.6 71.0 40.0 75.2 44.5 74.1 44.2
AT(TrH) 71.3 42.2 71.6 42.4 75.8 48.8 74.2 46.7

TRADES(AWP) 65.8 38.6 64.5 38.3 68.5 43.2 67.2 42.7
TRADES(AWPT) 68.0 39.8 67.0 39.7 70.5 44.9 68.9 44.9
TRADES(TrH) 65.3 41.9 66.4 41.6 70.1 48.9 68.9 47.3

Table 4.3: Comparisons between AWPT, AWP and TrH regularizations. Clean: % of Top-1 correct
predictions. ERA: % of Top-1 correct predictions under AutoAttack. A max Standard Error (SE) Stark &
University of California (2005) =

√
0.5 ∗ (1− 0.5)/n (i.e. n as the number of test images) is computed for

each dataset.

Table 4.2. As the cloud TPU chips are dynamically allocated and preemptable, we instead measure these

costs on two local NIVIDA RTX chips with 24G memory per chip. Because by default JAX preallocates

all GPUs, we set XLA_PYTHON_CLIENT_ALLOCATOR=platform before measuring the memory allocation and

run-time. In Table 4.2, we show that adding TrH regularization brings almost no additional memory usage

and runtime slowdown, compared to training without any regularization.

4.5.3 On the Promise of Top-Layer Regularization

Our TrH regularization demonstrates that by only regularizing the weights on the top layer it provides

useful gradient information for the bottom network to update the weights to learn better representations.
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Similarly, we can also modify AWP to only work on the top layer and we name this appproach as AWPT

(i.e. T stands for "on the top"). The fine-tuning setup is identical to our setup in AWP training and we

present the results in Table 4.3. Interestingly, we find retaining the AWP step only to the top layer does not

hurt the final performance compared to AWP and in some cases, i.e. on CIFAR-100 using a Hybrid-L16

model, AWPT is even better than AWP. This inspires a few research questions such that

do we actually need to regularize the bound for the entire network?

From our proposed work on TrH regularization and AWPT, we see that the answer to that question

may be NO. Our findings should inspire future work to discuss even more efficient ways of improving or

matching the current robust accuracy.

4.6 Related Work

In this section, we situate our contributions in the broader context of current literature, such as related

work on PAC-Bayesian theory, flatness regularization, as well as other types of robust adversarial losses.

PAC-Bayesian Theory and Flatness. Beyond the PAC-Bayesian inspired approaches for robust training

that were already mentioned in the paper (such as Wu et al. (Wu et al., 2020)), a different line of work

focuses on adapting PAC-Bayesian bounds for an ensemble of models, to improve either adversarial

robustness (Viallard et al., 2021) or out-of-distribution (OOD) robustness data (Zecchin et al., 2022). Several

other works have focused on methods for finding flat local minima of the loss surface in order to improve

(standard) model performance(Ding et al., 2022; Foret et al., 2021; Jia & Su, 2020). Also, outside the scope of

adversarial robustness, Ju et al. (Ju et al., 2022) find that trace of Hessian regularization leads to robustness

against noise in the labels. Their Hessian regularization is based on randomized estimation and is done for

all layers, whereas we effectively apply TrH regularization on the top layer only and with Theorem 5 as

theoretical justification.

Perhaps the closest approach to ours is the PACTran-Gaussian metric (Ding et al., 2022), which uses a

2nd-order approximation of the PAC-Bayesian bound as the metric for evaluating the transferability of

pretrained checkpoints. Similarly to our Eq. 4.6, the PACTran metric is composed of two terms: an ℓ2

regularized empirical risk (RER) and a flatness regularizer (FR). Our work was inspired by the PACTran

metric, but also makes several improvements. Firstly, in PACTran a single posterior variance σ2
q was shared

for all parameters. On the contrary, we used different σ2
q ’s for different parameters. Secondly, in PACTran

the optimization of the posterior mean θq is over the RER term only, while our optimization is over both

RER and FR. These two changes potentially make our bound tighter than the one in the PACTran paper.
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In addition, we also study and explicitly include the high-order terms in O(σ4
0 ), which was neglected in

PACTran.

Adversarial Surrogate Loss. In this paper, we focused only on the AT and TRADES approaches for

robust adversarial optimization as they achieve reasonable results on the datasets of choice. In fact, recent

work (Gowal et al., 2021) on achieving state-of-the-art robustness on CIFAR-10 also exclusively focuses on

AT or TRADES. Beyond AT and TRADES, the works in (Ding et al., 2020; Pang et al., 2022; Wang et al.,

2020b) explore other types of adversarial surrogate losses. Our method can be easily transferred to these

losses and we include additional examples in Appendix D.1.4.

4.7 Chapter Summary and Future Work

In Chapter 4, we discuss a novel way to improve the empirical robustness of deep networks. In particular,

we alleviate the overfitting in adversarial training with PAC-Bayesian theory. Using a linear-form PAC-

Bayesian bound overlooked by the prior work, we derive a 2nd-order estimation that includes the Trace of

Hessian (TrH) of the model. We then focus on the TrH of the top layer only, showing both empirically and

theoretically (for ReLU networks) that its minimization effectively leads to the minimization of the TrH of

the entire network, thereby providing a sound flatness regularization technique for adversarial training

which adds only little computational overhead. Experimental results show that our method is consistently

among the top performers on CIFAR-10/100 benchmark as well as achieves a significant improvement in

robust test accuracy on ImageNet compared to the other baselines.

The success of TrH regularization on the top layer, on the other hand, should inspire a closer look at the

marginal outcome of many full-network regularizations. Namely, does the regularization term provides a

necessary better gradient direction for the training by taking all parameters from the network, compared to

using only a fraction of the parameters? As modern architecture always grows up likely in an exponential

fashion, implementing a full-network regularization can be expansive in practice. For resource-constraint

scenarios, we have been faced with a trade-off between benefiting from an insightful theorem and the cost

to realize it. Our top-layer regularization inspires this novel direction of only restricting the classification

layer on the top and let the rest of the network to learn corresponding representations that will calibrate

with the dynamic of the top layer. In practice, this top-layer idea not only works for our TrH regularization

but also works for AWP as is shown in Section 4.5.3, pointing out an under-explored relation between the

behavior of a fraction of the network and the whole.



Chapter 5

Training Provably Robust Networks

One downside of evaluating models with an empirical attack and reporting the ERA as is done in Chapter 4

is that it only provides an upper-bound of the error that the model makes in the test time. The state-of-

the-art attack used in Chapter 4, at the time the thesis is written, will get replaced by even stronger and

well-designed attacks in the future so our evaluation may become less meaningful in the future’s hindsight.

One solution to the problem above is to train a model that can certify its predictions within an ϵ-ball, which

is, therefore, the focus of this chapter. Namely, a classifier F : Rd → [m] with certification can be written as

Fϵ : Rd → [m] ∪ {⊥} such that

Fϵ(x) =


F(x) if F(x) is ϵ-local robust at x (Definition 11)

⊥ otherwise
.

Compared to a conventional network F, Fϵ opts to abstain the prediction by returning ⊥ if the input is not

robust, i.e. less than ϵ-away from the decision boundary (see an illustration in Figure 5.1). Classification

with an option to abstain naturally happens to the case when more than one objects appear in the image,

e.g. an animal classifier cannot robustly classify an input to one class with both cats and dogs captured in

the image.

Over the last few years, a wide body of literature addressing robustness certification has emerged

to check for the local robustness of F(x) (Cohen et al., 2019a; Croce et al., 2019; Fromherz et al., 2021b;

Huang et al., 2021b; Jordan et al., 2019b; Lee et al., 2020b; Leino et al., 2021d; Li et al., 2019a,b; Singla

et al., 2022; Tjeng et al., 2019a; Trockman & Kolter, 2021; Wong & Kolter, 2018a). To date, the methods

that achieve by far the best certified performance are derived from randomized smoothing (Cohen et al.,

2019a); however, this provides only a probabilistic guarantee—which may generate a false positive claim

around 0.1% of the time (Cohen et al., 2019a)—and requires significant overhead for both evaluation and

certification. By contrast, deterministic certification may be preferred in safety-critical applications, e.g.,

59
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#! $ = 0 #! $ = ⊥

#! $ = 1

Figure 5.1: A 2D example of a binary classifier with abstention Fϵ.

malware detection and autonomous driving. Unless noted otherwise, the rest of this chapter should

concentrate on deterministic certification.

Because of the highly non-linear boundaries learned by a neural network, deterministically certifying the

robustness of its predictions usually requires specialized training procedures that regularize the network for

efficient certification, as post-hoc certification is either too expensive (Katz et al., 2017; Sinha et al., 2018) or

too imprecise (Fromherz et al., 2021b), particularly as the scale of the model being certified is increased. The

most promising such approaches—in terms of both certified accuracy and efficiency—perform certification

using Lipschitz bounds, meaning that the learning procedure must impose Lipschitz constraints on the

layers during training, either through regularization (Leino et al., 2021d) or orthogonalization (Trockman &

Kolter, 2021).

This chapter introduces a novel kind of model architecture that is constructed with an option to abstain

with a Lipschitz-based certification process, which we term as Globally Robust (GloRo) Nets. Compared to

existing methods, the certification process is instant in GloRo Nets, e.g. 600x times faster than dual network

approaches (Wong & Kolter, 2018b) and 105x faster than randomized smoothing (Cohen et al., 2019a).

Besides, the computation overhead of GloRo training is almost free compared to other approaches so this

approach is the first (and the only one at the time this thesis is published) that scales up to ImageNet-scale

data and models for (deterministic) robustness certification (see our entry at a public leaderboard1).

The rest of the chapter is organized as follows. In Section 5.1, we introduce foundation concepts and

building blocks for constructing a GloRo Net. We evaluate the robustness of GloRo Nets compared to

baseline approaches in Section 5.2. We provide an empirical study on the overfitting of GloRo Nets to

compare with the robust overfitting in empirical robustness discussed in Section 4.2. Section ?? uses GloRo

Nets as an example to compare the locality of provable robust networks with empirically robust ones (as

1https://sokcertifiedrobustness.github.io/leaderboard/

https://sokcertifiedrobustness.github.io/leaderboard/
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discussed in Chapter 4) and our summary of this chapter is included in Section 5.3.

5.1 Construction of Globally Robust (GloRo) Nets

Certifying the robustness of a prediction can be achieved by checking if the margin between the logit of the

predicted class and the others is large enough that no other class will surpass the predicted class on any

neighboring point in the ϵ-ball. To this end, many prior works rely on calculating the Lipschitz Constant K

(Definition 16) of the model to bound the requisite margin.

Definition 16 (K-Lipschitz Function) A function h : Rd → Rm is K-Lipschitz w.r.t S ⊆ Rd and norm, || · ||p, if

∀x, x′ ∈ S . ||h(x)− h(x′)||p ≤ K||x− x′||p. (5.1)

Namely, K is the maximum change of a function’s output for changing the input in S. Notice that it is

sufficient to use a local Lipschitz Constant Klocal of the model, i.e. S = {x′|||x′ − x|| ≤ ϵ} in Eq. 5.1, to

certify robustness (Yang et al., 2020b). However, the local bound is often computationally expensive and

needs a bounded activation to be used in training (Huang et al., 2021b). Alternatively, one can compute a

global Lipschitz Constant Kglobal, i.e. S = Rd in Eq. 5.1, and leverage the relation Kglobal ≥ Klocal to certify

any input at any radius ϵ. A global bound is more efficient at test time for certification because it only

needs to be computed once and can be used for any input at any radius ϵ.2 However, an arbitrary global

bound can be vacuously large and thus not useful for certification.

The proposed method, Globally Robust (GloRo) Nets, is a composition of global Lipschitz-bound-based

certification with an effective way of regularizing the global Lipschitz Constant during training so it is tight

for the certification use during the test time. The target norm in this chapter is ℓ2 so we simply write ∥ · ∥

and omit p from the subscription. See an discussion of ℓ∞ case in Section 5.3.

5.1.1 GloRo Certification

Recall that in Chapter 2 we use f : Rd → Rm to denote a neural network that takes an input x ∈ Rd

and outputs a logit vector for m classes. The integer prediction of f is further denoted as the uppercase

F(x) = arg maxi fi(x). GloRo computes an upper-bound of the global Lipschitz constant, Kji of the logit

margin between the predicted class, say j = F(x), and every other class, i, by taking the product of the

Lipschitz constant of each constituent layer as follows:

Kji ≤ ||wL
j − wL

i || ·
L−1

∏
l=1

K(l), (5.2)

2Furthermore, when the network is trained for certification with the global bound, the global bound has the same certification potential
as the local bound (Leino et al., 2021d).
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where wL
j is the j-th column of the top-layer’s weight matrix and K(l) is the Lipschitz Constant of the l-th

layer. Put together, the output of a GloRo Net follows Definition 17.

Definition 17 (GloRo Prediction) For a GloRo Net Fϵ : Rd → [m] ∪ {⊥} with Lipschitz logit output f : Rd →

Rm for class 0 to m− 1, let

j = arg max
i∈[m]

fi(x),

and Kji be an upper-bound of the global Lispchitz constant for f ji(x) = f j(x)− fi(x) defined in Equation 5.2, Fϵ

equals to

Fϵ(x) =


j if f j(x) ≥ maxi ̸=j

[
fi(x) + ϵKji

]
⊥ otherwise

.

The soundness of GloRo certification can be formally shown by Theorem 6.

Theorem 6 If GloRo Net Fϵ(x) ̸= ⊥, the corresponding standard model F(x) is ϵ-local robust at x.

Proof. Let j = Fϵ(x). j ̸= ⊥ =⇒ f j(x) ≥ maxi ̸=j[ fi(x) + ϵKji]. For any x′ such that ∥x′ − x∥p ≤ ϵ,

|( f j(x′)− fi(x′))− ( f j(x)− fi(x))| ≤ ϵ∥x′ − x∥p (Definition 16).

|( f j(x′)− f j(x))− ( fi(x′)− fi(x))| ≤ ϵKji

( f j(x′)− f j(x))− ( fi(x′)− fi(x)) ≥ −ϵKji

f j(x′) ≥ fi(x′) + f j(x)− fi(x)− ϵKji

Because j ̸= ⊥,

∀i ̸= j, f j(x) ≥ fi(x) + ϵKji =⇒ f j(x)− fi(x)− ϵKji ≥ 0.

Thus, we arrive

∀i ̸= j, f j(x′) ≥ fi(x′) =⇒ F(x′) = j = F(x),

which shows that F(x) is ϵ-locally robust at x.

Tightness of the Bound. The product of layer-wise Lipschitz constants, i.e. RHS of Equation 5.2, is

concerned to be a loose bound for the function’s true Lipschitz constant. To see this, let

r(x) = r1(r2(x)) and u = arg max
x

∥r(x)∥
∥x∥ . (5.3)
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Algorithm 2: Power Iterations
Hyper-parameters: The number of iteration N.
Inputs: An affine transformation A : Rd → Rm and its transpose operation A∗.

// For matrix product, A∗ = A⊤. For convolution, A∗ is transpose convolution.
Output: Operator Norm of A.

1 x ← random_vector();
2 x ← x

∥x∥ ;

3 foreach i ∈ [N] do
4 x ← A∗(A(x));
5 x ← x

∥x∥ ;

6 end
7 return: ∥A(x)∥

Here maxx ∥r(x)∥/∥x∥ is the solution to Equation 5.1 thus the Lipschitz constant K(r) of u. Observe that

the layer-wise upper-bound, i.e., K(r1) · K(r2) (where K(ri) is the Lipschitz constant of ri), is tight for K(r)

only if u and r(u) point in the same direction in the representation space. This is presumably unlikely to

happen in a standard network and empirically demonstrated (Huster et al., 2018), as random vectors are

almost orthogonal in high-dimensional space. However, what is overlooked by the prior work is that by

properly regularizing this layer-wise upper-bound during the trianing, e.g. Equation 5.2, it is possible to

tighten the layer-wise bound so it can be useful for certification. In Section 5.1.3, we provide greater details

on GloRo traning scheme with empirical evidence that Equation 5.2 is a tight upper-bound in GloRo Nets

in Section 5.2.

Computing Layer-wise Lipschitz Constant. Computing the Lipschitz upper-bound in Equation 5.2

requires the access to the Lipschitz constant of each constitute layer in the model. Our implementation

uses the operator norm of an affine transformation, i.e. convolution and dense layers, as its Lipschitz

constant (Gouk et al., 2021) where the operator norm is calculated efficiently with power iterations (Farnia

et al., 2019; Gouk et al., 2021) (Algorithm 2). With a large number of iterations, the power method is

guaranteed to converge to the operator norm of any affine transformation. To provide a precise bound

for certification, we run till convergence for the power method during the test time. Although batch

normalization is linear and consistent at the test time, our experiments together with other works (Huang

et al., 2021b; Singla & Feizi, 2021) have not seen normalizing activation during training and testing help to

improve the robustness.

Gradient-Norm Preservation (GNP) Activation. Most activation functions, e.g. ReLU, Softplus and

GeLU (Hendrycks & Gimpel, 2016), are 1-Lipschitz. However, their local Lipschitz constant may not

be 1 all the time, meaning the global bound can be loose for a particular set of inputs. For example,

ReLU is inactivated and behaves as a constant function for negative pre-activations. For any activation
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function α : Rd → Rd, supx ||▽xα(x)|| = 1 is sufficient for α to be 1-Lipschitz but our goal is to have

||▽xα(x)|| = 1 almost everywhere, i.e. gradient-norm preservation (GNP), so the 1 Lipschitz bound is tight

almost everywhere. An example and popular design of GNP activation is MinMax function (Definition 18),

which belongs to a family of GroupSort activations (Anil et al., 2019).

Definition 18 (MinMax (Anil et al., 2019)) A MinMax activation αm : R2 → R2 is equal to

αm

(  x1

x2

 ) =

 min(x1, x2)

max(x1, x2)

 .

In short, MinMax swaps two neighboring inputs if the first is not greater than the second (or the

other way around but in this thesis we use the order of min-max). This is equivalent to multiple a

permutation matrix with the input. Regardless of the actual permutation, which is a function of the

input, any permutation matrix has a constant singular value of 1 so MinMax is GNP and 1-Lipschitz both

locally and globally. Our empirical results (to follow in Section 5.2) have shown that MinMax function

is consistently better than ReLU in training provably robust models. A generalization of MinMax is

HouseHolder activation (Singla et al., 2022) and is demonstrated to outperform MinMax for a particular set

of networks, i.e. a network with its global Lipchitz equal to 1; however, the similar success has not been

observed in GloRo Nets so we use MinMax as the standard replacement for ReLU unless noted otherwise.

5.1.2 Tightening Lipschitz Bounds in ResNet

For layers with an additional skip connection, i.e.

rstd(x) = x + g(x), (5.4)

where g is a small network often with 2-3 convolutional layers and activation functions. Because rstd(x) is

not an affine transformation, power methods fail in this case. Instead, it is conventional to use 1 + Kg to

be an upper-bound of the Lipschitz constant for rstd(x) (Gouk et al., 2021). However, 1 + Kg is unlikely

to be tight due to the same problem of r(x) in Equation 5.3, even though we have the exact solution to

the Lipschitz constant Kg. Our empirical results show that ResNets (He et al., 2015) using 1 + Kg as the

layer-wise Lipschitz constants for robustness certification do not outperform feed-forward Convolutional

Networks (ConvNets). This is counter-intuitive because ResNets have been found to be more effective for

scaling network depth compared to ConvNets, and therefore are expected to benefit from larger network

capacity to learn more robust decision boundaries.

LiResNet Layer. An alternative to the conventional ResNet layer, i.e. Equation 5.4, which contains a skip

connection but has a much tighter Lipschitz constant other than 1 + Kg is to inject the skip connection
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Figure 5.2: LiResNet Architecture. We additionally use Last Layer Normalization (LLN) (Singla et al., 2022)
in the Head. Architecture details are included in Appendix C.

inside a convolutional layer, as proposed in our recent work (Hu et al., 2023). That is, we define

rlinear(x) = x + conv(x).

Because rlinear(x) is an affine transformation w.r.t x, its Lipschitz constant of rlinear can be tightly

computed by directly applying power methods, which is always smaller or equal to the addition-form

bound (i.e., 1 + Kconv). By stacking multiple linear residual blocks (with interjecting activations), and

including a stem, neck, and head, we obtain the Linear ResNet (LiResNet) architecture, illustrated in

Figure 5.2 with more details in Appendix C.

In the evaluation sections, we show LiResNets outperform the conventional ResNets and ConvNets on

various data distributions, proving its unique role in learning certifiable robust models.

5.1.3 GloRo Training

A straightforward way to encourage the model to have certified prediction is penalizing its Lipschitz

constant so the margins between the top prediction and other candidates shrink less when the input is

perturbed. Intuitively, one can regularize the Lipschitz constants with a penalty coefficient along with the

standard loss. However, it is unclear how one should set or schedule the penalty coefficient to balance

between learning a smooth but expressive network. Over-regularizing the Lipzchitz constant may lead

towards a degenerated model, whereas under-regularization fails to certify the prediction. To address the
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hardness of using a regularization term to control Lipschitz constants, which is inefficient and tricky in

practice, we provide the following two techniques.

Training with an Extra ⊥ Class. Notice that during the test time, a GloRo Net abstain by outputting ⊥

for points that can not be certified. During training, we can construct an artificial logit score for the ⊥ class,

denoted as f⊥(x), and directly use conventionally loss function, e.g. Cross-Entropy loss (CE), to reward the

network for not letting f⊥(x) surpass the logit score of the true label. Based on our certification approach

(Definition 17), f⊥(x) needs to be at least the logit score of the most competitive class plus the Lipschits

constant of the margin. Namely, suppose j = arg maxi fi(x), we set

f⊥(x) = max
i ̸=j

[
fi(x) + ϵKji

]
.

Because no natural input is labeled as ⊥, the network must learn to decrease f⊥(x) in order for the logit

of a true label to surpass f⊥(x). On the other hand, it is not necessary for the model to have f⊥(x) = 0

because it is sufficient to have f j(x) ≥ f⊥(x) to certify the prediction so further decreasing f⊥(x) at x will

not be rewarded as much as getting another point correct. Adding an extra logit score helps to provide

gradient directions that precisely do what we desire for certifiable robustness and avoid abusing the

capacity of the network from learning over-regularized models. An illustration of the ⊥ logit can be seen

in Figure 5.3.

With a logit vector [ f0(x), · · · , fm−1(x), f⊥(x)] for an input x, the training objective uses a standard

Cross Entropy (CE) or a loss inspired by TRADES (Zhang et al., 2019b) (previously discussed in Chapter 4

with Definition 15) defined as follows.

Definition 19 (GloRo-CE Training) Given a GloRo Net Fϵ and the ⊥ logit score f⊥(x), GloRo-CE loss for (x, y)

equals to

CE((x, y), f ϵ(x)),

where f ϵ(x) = [ f0(x), · · · , fm−1(x), f⊥(x)].

Definition 20 (GloRo-TRADES Training) Given a GloRo Net Fϵ and the ⊥ logit score f⊥(x), GloRo-TRADES

loss for (x, y) equals to

CE((x, y), f ) + λt · kl(softmax( f ϵ(x))||softmax( f (x))),

where f ϵ(x) = [ f0(x), · · · , fm−1(x), f⊥(x)] and λt is a hyper-parameter.
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Figure 5.3: Illustrations of GloRo-CE (Definition 19), GloRo-TRADES (Definition 20) and GloRo-EMMA
(Definition 21) losses.

Efficient Margin MAximization (EMMA). One potential issue for using the ⊥ class is it can be suboptimal

at penalizing all logit margins that are not large enough. That is, when there are multiple threatening

candidate classes which are all close to the top one, the gradient update from GloRo-CE or GloRo-TRADES

only penalizes the most threatening class. Ultimately, this need not be a problem—by minimizing the loss

originating from the worst-case adversary, the network successfully guards against any possible adversarial

example. However, at each iteration, only one competing class faces a strong negative gradient signal

even if the threatening class is only slightly more competitive than the others. For example, in Figure 5.3,

GloRo-CE/TRADES training at iteration t largely focuses on the decision boundary between class 1 and

3 even though class 2 is also competitive but slightly less so than class 3. Furthermore, the possibility

arises, then, that the threatening class will alternate between competing classes in a sort of “whack-a-mole”

during training.

Indeed, we find this phenomenon to be increasingly common as the number of classes grows. Figure 5.4

shows the fraction of instances at each epoch for which the threatening class differs from in the preceding

epoch. In the initial 100 epochs, more than 30% instances from Tiny-ImageNet (containing 200 classes) have

different threatening classes at each each iteration, while the same number for CIFAR-10 is only about 10%.

At best, this contributes to making training with many classes less efficient, and at worst, it halts progress

as work in one epoch is undone by the next.
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Figure 5.4: Plot of the percentage of instances at each epoch during training for which the threatening
class (the one with the second-highest logit value) differs compared to the previous epoch (on the same
instance). Numbers are reported on three datasets with 10, 100, and 200 classes using a GloRo LiResNet
with TRADES loss.

To address this problem, we propose Efficient Margin MAximization (EMMA) loss (Definition 21) for

training GloRo Nets. EMMA loss can be conceptualized as adding to each non-ground-truth class the

maximum margin (ϵKyi), which the respective logit could gain on the ground truth logit within an ϵ

neighborhood (illustrated in Figure 5.3). Effectively, this enables us to penalize adversarial examples from

all classes simultaneously (as illustrated in Figure 5.3), leading to a less sparse gradient signal.

Definition 21 (Efficient Margin Maximization loss) Given a GloRo Net Fϵ with the logit output f , GloRo-

EMMA loss for data (x, y) equals to

− log
exp

(
fy(x)

)
∑i exp

[
fi(x) + ϵ̃iKyi

] and ϵ̃i = clip_value_no_grad(κi(x), 0, ϵ)

When using EMMA loss, the actual radius at which we require the model to certify robustness at each

iteration is ϵ̃i for the margin between class i and y. It’s important to note that if the model still predicts

class i over the ground truth class y (i.e., fy(x) < fi(x) thus κi(x) < 0), we clip ϵ̃i to 0 and EMMA loss

reduces to a standard Cross Entropy loss (for class i). In this case, the training focuses on improving clean

accuracy first. As the training progresses, ϵ̃i may grow to the same magnitude as the expected radius ϵ.

Once this happens, we shift the model’s focus towards certifying other instances, rather than continuously

increasing the robust radius for x. We need to stop the gradient back propagation from ϵ̃i and treat it as a

number. Otherwise the denominator term fi(x) + ϵ̃iKyi is just fy(x) and the logit for class i is removed

from the computation graph of the loss.
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EMMA may bear similarities to Lipschitz-margin training (LMT) (Tsuzuku et al., 2018), which adds
√

2ϵK to all non-groundtruth logits and K is the global Lipschitz constant of F. However, here are two

fundamental differences that distinguish EMMA. First, instead of employing the square-root bound, EMMA

directly utilizes the Lipschitz constant for each margin, i.e. Kyi, which provides a tighter bound. Second,

the robust radius used in EMMA is ϵ̃ instead of the radius ϵ used in testing. By the definition of EMMA,

0 ≤ ϵ̃ ≤ ϵ and ϵ̃ is 0 if the model is not predicting the input correct. ϵ̃ grows as the model becomes more

robust at the corresponding input. As a result, when the model is not sufficiently robust at the input,

EMMA uses ϵ̃ < ϵ and imposes a milder robust regularization. On the other hand, LMT always adds
√

2ϵK to all non-groundtruth logits even before the model is capable of predicting the label correct.

The dynamic margin used in EMMA loss is important. If using a fixed margin, the loss function turns

out to be:

ℓfixed = − log
fy(x)

∑i fi(x) + ϵKyi

The fixed margin loss ℓFixed penalties the margin Lipschitz between the ground truth class and all other

classes. Therefore, this loss function imposes a stronger regularization on the Lipschitz constant of the

model than EMMA loss, and limits the model capacity more. We find that models trained with the fixed

margin loss require weaker data augmentation or smaller training ϵ to avoid underfitting. However, this

will make the model robust overfitting. The gap between validation clean accuracy and validation VRA is

increased for the fixed margin loss and the validation VRA is lower than models trained with the dynamic

margin loss, i.e., EMMA loss.

Number of Power Iterations in Training. To certify the prediction in the test time, power iterations need

to run till convergence for precise results. However, during training, the bound is not necessary to be as

precise as the test time. What matters more is that we need the gradient signal from power methods to

provide a direction so we can efficiently decrease the operator norm. In practice, we find setting N = 5 or

10 is sufficient for the purpose of training. For readers who are interested in the effect of the number of

power iterators on the gradient update direction, we refer to Leino (2022).

5.2 Evaluations

5.2.1 Evaluating Robustness

This section evaluates the provable robustness of GloRo Nets compared to other baselines. Different from

using empirical attacks for evaluating robustness in Section 4.5, we focus on Verifiable Robust Accuracy (VRA),

i.e. the percentage of points that are both correct and on which the model is certifiably robust, as our metric
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in this section. We assume all adversaries are ℓ2-norm-bounded with a radius ϵ. For MNIST, we report

VRA at ϵ = 1.58. For CIFAR-10/100, Tiny-ImageNet and ImageNet, we report VRA at ϵ = 0.141 ≈ 36/255.

Our use of ϵ for each dataset follow the standard choices in the literature (Araujo et al., 2023; Huang

et al., 2021b; Lee et al., 2020a; Meunier et al., 2022; Singla & Feizi, 2021; Singla et al., 2022; Wong & Kolter,

2018a,b). For baseline methods, we use the best VRAs reported by their original papers.

Baselines. On MNIST, the baseline provably robust networks include KW (Wong & Kolter, 2018b) and

BCP (Lee et al., 2020a). On CIFAR-10/100, KW and BCP are no longer competitive baselines after the

publication of our initial GloRo paper (Leino et al., 2021b) so they are not included for these datasets.

We instead include BCOP (Li et al., 2019b), Cayley (Trockman & Kolter, 2021), Local-Lip (Huang et al.,

2021b), SOC(HH+CR) (Singla et al., 2022) and LOT (Xu et al., 2022), CPL (Meunier et al., 2022), which

are published after the initial GloRo paper (Leino et al., 2021b) but earlier than our follow-up work (Hu

et al., 2023). Additionally, we include SLL (Araujo et al., 2023), a concurrent work to (Hu et al., 2023). On

Tiny-ImageNet, we include Local-Lip (Huang et al., 2021b) and SLL (Araujo et al., 2023) because other

baselineds do not run experiments on this dataset. For ImageNet, we are the only and the first one to

report VRA at the time this thesis is written. For readers who are interested in the comparison of our

results to older or newer methods, please find our entries on the publick leaderboard3.

Network Architecture. We build GloRo Nets using ConvNets and LiResNets. For ConvNets, we follow

the layer specifications used in prior work (Wong & Kolter, 2018b). For example, we use 6C2F to denote a

ConvNet with 6 convolutional layers and 2 fully-connected (dense) layer. For LiResNet, we a model with 6

linear residual layer and 128 channels for each convolutional module inside the residual layer as L6128W.

We use MinMax as the activation function for all architectures. More architecture details can be found in

Appendi ??. Network architectures used in prior works, if different from our choices, are denoted in the

same way as their original papers do. To quickly distinguish the size of one architecture from another, we

map the number of network parameters from integer values to the following labels.

• the number parameters < 5M =⇒ S.

• the number parameters from 5M to 10M =⇒ M.

• the number parameters from 10M to 50M =⇒ L.

• the number parameters >50M =⇒ XL.

3https://sokcertifiedrobustness.github.io/leaderboard/

https://sokcertifiedrobustness.github.io/leaderboard/
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method Arch. Config. Size Clean (%) ERA (%) VRA (%)

MNIST (ϵ = 1.58, SE = ±0.5%)

KW (Wong & Kolter, 2018b) ConvNet 4C3F S 88.1 67.9 44.5
BCP (Lee et al., 2020a) ConvNet 4C3F S 92.4 65.8 47.9
Gloro Net (TRADES) ConvNet 4C3F S 97.0 81.9 62.8

CIFAR-10 (ϵ = 0.141, SE = ±0.5%)

BCOP (Li et al., 2019b) ConvNet 6C2F S 75.1 67.3 58.3
Cayley (Trockman & Kolter, 2021) ConvNet 6C2F S 75.3 67.7 59.2
Local-Lip Net (Huang et al., 2021b) ConvNet 6C2F S 77.4 70.4 60.7
SOC (HH+CR) (Singla et al., 2022) ConvNet LipConv-15 M 76.4 - 63.0
LOT (Xu et al., 2022) ConvNet LipConv-25 M 77.1 - 64.3
CPL (Meunier et al., 2022) ResNet 70C15F XL 78.5 - 64.4
SLL (Araujo et al., 2023) ResNet 120C15F XL 73.3 - 65.8
Gloro Net (TRADES) ConvNet 6C2F S 77.0 69.2 60.0
Gloro Net (EMMA) LiResNet L6W128 S 76.5 70.6 63.7
Gloro Net (EMMA) LiResNet L18W256 M 78.1 72.0 66.0

CIFAR-100 (ϵ = 0.141, SE = ±0.5%)

BCOP (Li et al., 2019b) ConvNet LipConv-10 M 45.4 - 31.7
Cayley (Trockman & Kolter, 2021) ConvNet LipConv-10 M 45.8 - 31.9
SOC (HH+CR) (Singla et al., 2022) ConvNet LipConv-20 L 47.8 - 34.8
LOT (Xu et al., 2022) ConvNet LipConv-30 L 49.2 - 35.5
CPL (Meunier et al., 2022) ResNet 70C15F XL 47.8 - 33.4
SLL (Araujo et al., 2023) ResNet 120C15F XL 46.5 - 36.5
Gloro Net (EMMA) LiResNet L6W128 S 49.6 43.4 35.4
Gloro Net (EMMA) LiResNet L18W256 M 51.2 44.7 38.3

Tiny-ImageNet (ϵ = 0.141, SE = ±0.5%)

Local-Lip Net (Huang et al., 2021b) ConvNet 8C2F M 36.9 33.3 23.4
SLL (Araujo et al., 2023) ResNet 120C15F XL 32.1 - 23.2
Gloro Net (EMMA) LiResNet L6W128 S 37.8 33.8 27.0
Gloro Net (EMMA) LiResNet L18W256 M 40.7 36.3 29.2

ImageNet (ϵ = 0.141)

Gloro Net (EMMA) LiResNet L18W588 M 45.6 - 35.0

Table 5.1: Comparing GloRo Nets with other provably robust networks on Verifiably Robust Accuracy (VRA),
i.e the percentage of test points that are both accurate and their predictions are locally robust. A max
Standard Error (SE) (Stark & University of California, 2005) =

√
0.5 ∗ (1− 0.5)/n (n as the number of test

examples) is computed for each dataset. The best results appear in bold. Underlined results are those that
fall within the SE range of the result and are regarded roughly equal to the best result.

Main Results. In Table 5.1, the top results are highlighted in bold font. To measure the significance of an

improvement, we calculate the maximum standard error (SE) (Stark & University of California, 2005) =√
0.5 ∗ (1− 0.5)/n (where n denotes the number of test examples) for each dataset. Thus, the accuracy of a

certain model is regarded a silver result asilver, if its SE interval overlaps with the that of the top result atop.

Namely, atop − SE ≤ asilver + SE.

On MNIST, GloRo Nets outperform the previous best results by around 15% wit the same network,

showing the promise of GloRo Nets of utilizing the network capacity. On CIFAR-10/100, the GloRo

Nets with LiResNet and EMMA loss are better than all baseline results. Notice that our LiResNets are
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Architecture dataset TRADES EMMA

CIFAR-10 58.8 59.2
ConvNet CIFAR-100 34.0 35.0

Tiny-ImageNet 26.6 27.4

CIFAR-10 66.2 66.3
LiResNet CIFAR-100 37.3 37.8

Tiny-ImageNet 28.8 30.3

(a)

Dataset L ConvNet ResNet LiResNet

6 64.0 60.3 65.5
CIFAR-10 12 59.2 60.0 66.3

18 × 60.1 66.6

6 36.5 33.5 37.2
CIFAR-100 12 35.0 33.5 37.8

18 × 33.6 38.0

(b)

Table 5.2: (a) VRA performance (%) of a ConvNet and a LiResNet on three datasets with different loss
functions. (b) VRA (%) performance on CIFAR-10/100 with different architectures (L is the number of
blocks in the model backbone). We use EMMA loss for Gloro training. All models in this table use 256
channels in the backbone. A value of × indicates that training was unable to converge.

much smaller than the architecture used by SSL with approximately 0.15x layers than the model used by

SSL (Araujo et al., 2023). On Tiny-ImageNet, GloRo Nets are better than two baselines and our best result,

i.e. LiResNetand EMMA loss, is better than the previous state-of-the-art by 5.8%. Interestingly, we see

that with a much smaller network, GloRo Net is much better than a much larger network trained with

SSL. This is even obvious when comparing GloRo Nets with a network size of M, e.g. L6128W, with SSL

using a network size of XL. Our results on Tiny-ImageNet demonstrate the effectiveness of GloRo Nets on

leveraging the capacity of neural nets to learn robust decision boundaries.

There is no theoretical limitation of the baseline approaches that would prevent us from directly

training them on ImageNet; however, practical resource constraints prevent us from training and wait until

convergence. For example, baselines using orthogonalized kernels—e.g., Cayley, BCOP, and SOC—do not

easily fit into memory with 224× 224× 3 images, and local Lipschitz computation—e.g.,Local-Lip Net—is

both time and memory intensive. Thus, to the best of our knowledge, we are the first to report the VRA on

ImageNet with a deterministic robustness guarantee.

5.2.2 Ablation Study for Architecture and Loss

We mainly focus on LiResNet and EMMA loss in Table 5.1 because we found they have surpassed other

configurations. We run an ablation study on the choice of architecture and another on the choice of loss.

Results are shown in Table 5.2.

For both ConvNets and LiResNets, we experiment on CIFAR-10, CIFAR-100 and Tiny-ImageNet and

report VRAs in Table 5.2a. ConvNets are modified to have same channel size (i.e. wider) as LiResNets and

we end up achieving higher VRAs than Leino et al. (2021d). For all LiResNets, we adjust the configuration

of the first convolution in the Tiny-ImageNet models to have the same output size compared to the

CIFAR models, minimizing the impact of the image size on our conclusions (as the key variable in these

experiments is the number of classes). The performance gain from switching CE or TRADES to EMMA on
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GloRo Nets becomes clear on Tiny-ImageNet than that is on CIFAR-10. When noticing that Tiny-ImageNet

has 200 classes while CIFAR-10 only has 10 classes, this observation aligns with our hypothesis used to

motivate EMMA loss discussed in Section 5.1.3. Namely, the rotating threatening class phenomenon in

GloRo-CE/TRADES may contribute to suboptimal learning.

Table 5.2b includes another ablation study for the choice of architecture. We run head-to-head com-

parisons on CIFAR-10 and CIFAR-100 of GloRo Nets using (1) a feed-forward ConvNet architecture, (2) a

conventional ResNet architecture, and (3) a LiResNet architecture. We train all three architectures with

EMMA loss at three different depths. We see in Table 5.2b that very deep ConvNets may not be able to

converge even on small-scale datasets like CIFAR-10 and CIFAR-100. Moreover, the VRA of both ConvNets

and conventional ResNets do not benefit from the increasing network depth – in fact, performance decreases

as the network is made significantly deeper. The observed performance decrease and convergence issue

on ConvNets are perhaps not specific to robust training as this is one of the acknowledged reasons why

we switch from ConvNets to ResNets in standard training—very deep ConvNets suffer from gradients

issues. However, in the case of certified training with very deep ConvNets, this problem may be amplified

since the training objective imposes strong regularization from the Lipschitz estimation. On the other hand,

we see that ResNet and LiResNet do not suffer from the same convergence issues because of the use of

skip connections. However, in comparison to ResNet, LiResNet is the only architecture under the same

conditions that benefit from more layers, as the over-estimation of the Lipschitz constant in ResNets results

in overregularization, wasting the model’s capacity.

5.2.3 Evaluating the Tightness of the Bound

Weng et al. (2018a) report that a layer-wise product of Lipschitz upper-bound on the global Lipschitz

constant is not capable of certifying robustness for a non-trivial radius. While this is true of models

produced via standard training, GloRo Nets impose a strong implicit regularization on the global Lipschitz

constant. Indeed, Table 5.3 shows that the global upper bound is several orders of magnitude smaller on

GloRo Nets than on standard networks.

Another potential limitation of using an upper bound of the global Lipschitz constant is the bound

itself (Huster et al., 2018). Table 5.3 shows that a lower bound of the Global Lipschitz constant, obtained via

running gradient descend using Definition 16 (see details in Appendix C), reaches an impressive 83% of the

upper bound on MNIST, meaning that the upper bound is fairly tight. On CIFAR-10 and Tiny-Imagenet

the lower bound reaches approximately 70% and 47% of the upper bound, respectively. However, on a

standard model, the lower bound is potentially orders of magnitude looser. These results suggests the
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method global UB global LB local LB

MNIST (ϵ = 1.58)

Standard 5.4 · 104 1.4 · 102 17.1
GloRo Net 2.3 1.9 0.8

CIFAR-10 (ϵ = 0.141)

Standard 1.2 · 107 1.1 · 103 96.2
GloRo Net 15.8 11.0 3.7

Tiny-Imagenet (ϵ = 0.141)

Standard 2.2 · 107 3.6 · 102 40.7
GloRo Net 12.5 5.9 0.8

Table 5.3: Comparing the tightness of global Lipschitz bound using layer-wise product on standard and on
Gloro Nets.

objective imposed by the GloRo Net helps by incentivizing parameters for which the upper bound estimate

is sufficiently tight for verification.

Finally, we compare the global upper bound to an empirical lower bound of the local Lipschitz constant.

The local lower bound given in Table 5.3 reports the mean local Lipschitz constant found via optimization

in the ϵ-balls centered at each of the test points. The ratio of the local lower bound to the global upper

bound is essentially zero in the standard models, compared to 6-35% in the GloRo Nets, establishing that

the upper bound is again much tighter for GloRo Nets. Still, this suggests that a reasonably tight estimate

of the local bound may yet help improve the VRA of a GloRo Net at runtime, as is shown by Huang

et al. (Huang et al., 2021b). However, the gain of VRA is less than 1% on CIFAR-10, demonstrating the

sufficiency of using a global bound to certify robustness.

5.3 Related Work and Discussion

Randomized Smoothing. Contradictory to the deterministic robustness guarantee focused in this paper,

probabilistic guarantees, mostly based on Raondmized Smoothing (RS, Definition 13) (Cohen et al., 2019a),

have been long studied and experimented on ImageNet-scale models, motivating a set of smoothing-aware

training approaches to further increase the robust radius (Carlini et al., 2022; Jeong et al., 2021; Salman

et al., 2019, 2020). On ImageNet, RS indeed reports certifying more points than Gloro LiResNet at the

same ϵ. However, the fundamental limitation of a probabilistic guarantee is the false positive results,

meaning that adversarial examples can go unchecked. Even a 0.1% false positive rate (FPR) is not affordable

to many real-world security and financial applications. On the other hand, RS-based certification has

order-of-magnitude larger computation overhead compared to Lipschitz-based certification. For the same

example of FPR=0.1%, RS runs 100,000 extra inferences to certify 1 instance and the number grows up
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exponentially to achieve lower FPR (Cohen et al., 2019a). This resource-consuming nature of RS-based

certification in the end limits the type of applications one can deploy it for.

ℓ∞ Certification. While in this work, we focus on the ℓ2 norm, the ideas presented in Chapter 5 can be

applied to other norms, including the ℓ∞ norm. However, we find that the analogue of the approximation

of the global Lipschitz bound given Equation 5.2 is loose in ℓ∞ space. Meanwhile, a large volume of

prior work applies ℓ∞-specific certification strategies that proven effective for ℓ∞ certification (Balunovic &

Vechev, 2020; Zhang et al., 2020).

Tightening Lipschitz Bound with Better Architecture. The closest line of work on improving VRAs

with architecture redesign is the use of othornormalized convolution (Singla & Feizi, 2021; Trockman

& Kolter, 2021), which is exactly 1-Lipschitz by construction. In a similar spirit, we introduce the linear

residual branch in LiResNet to solve the overestimation of Lipschitz Constant in the conventional ResNet.

Our linear residual layer compares favorably to othornormalized layers in a few key advantages. The

linear branch is open to any affine transformation with no restriction on its kernel. Although there is no

technical limitation that would prevent us from using othornormalized convolution in LiResNet, a standard

convolution works favorably well in our experiments and is significantly less expensive than training with

othornormalized ones. As is shown in Table 5.1, it is worth mentioning that all prior works which attempt

to scale up feed-forward ConvNets is less efficient than the LiResNetproposed for GloRo Nets, whereas

the skip connection allows us to effectively utilize the increasing capacity and improve VRAs on various

datasets.

Robustness Needs More Capacity. Despite the fact that robust and correct predictions, i.e., VRA=100%,

is achievable for many standard datasets (Yang et al., 2020b), the state-of-the-art VRAs (which are achieved

using Lipschitz-based certification) are far away from realizing this goal. Besides the fact Lipschitz-based

certification is not exact and may falsely flag robust points, recent works have emphasized the role of

network capacity in learning robust classifiers. Bubeck (Bubeck & Sellke, 2021) showed that a smooth (and

thus robust) decision boundary requires d times more parameters than learning a non-smooth one, where

d is the ambient data dimension. In addition, to tightly certify a robust boundary with Lipschitz-based

approaches, Leino (Leino, 2023) demonstrates the need for extra capacity to learn smooth level curves

around the decision boundary, which are shown to be necessary for tight certification.

Fundamental Limitation in Robust Classification. Our motivation on EMMA and the empirical observa-

tions on the impact of class numbers to VRAs expose the hardness in scaling up robustness certification to
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real-world datasets. Training to be both robust and accurate has to balance the rewards between predicting

the groundtruth and pushing away threatening boundaries, which often becomes precarious and tricky as

the classes increase. In addition, the problem is potentially compounded by ambiguous or conflicting class

labels, which may be indicative of a mismatch between the data distribution and the learning objective of

categorical accuracy—and particularly its robust form. A number of mislabeled images have been identified

in ImageNet (Beyer et al., 2020; Northcutt et al., 2021; Vasudevan et al., 2022; Yun et al., 2021), placing

difficulties for robust classification. Moreover, real-word images are often not well-cropped input that only

contains one semantically meaningful object. Robustly assigning only one label to an image with multiple

objects, the often case in ImageNet, again limits the function networks can learn – the network either learn

to not see the rest of objects or find that there is no way to be certifiably robust. In such cases, robust

learning may be essentially limited unless alternate objectives (e.g., robust analogs of top-k accuracy (Leino

& Fredrikson, 2021) and robust segmentation (Fischer et al., 2021)) are pursued.



Chapter 6

Conclusions And Future Work

In this last chapter, we first summarize our approaches, results, and achievements from the previous

chapters in Section 6.1. Our work on improving locality by seeking for better tools to improve the

robustness is an important step but probably far from sufficient towards promoting feature alignment. In

the rest of this chapter, we discuss possible limitations of locality and robustness in realizing well-aligned

models, in both vision and non-vision tasks uncovered by our previous discussion. We propose a set

of future works to address issues that cannot by directly solved by robustness, together with a set of

preliminary results as a proof of concept.

6.1 Conclusions

In this thesis, we concentrate on one of the fundamental requirements for deep neural networks to

align with humans’ interests. That is, when they are used as image classifiers, their outputs are expected

to be always equivalent to human experts’ answers, which we term as output alignment. Given that it is

not feasible to test every sample from the distribution, we instead consider an essential property for the

model to generate aligned outputs — the important features that contribute to the model’s output must

be semantically proper to the task from a human’s perspective. For the domain, i.e. image classification,

studied in this thesis, we say a model is aligned with humans on the use of features if influential pixels to

the model’s output class are the ones that humans would agree and find relevant to the label.

To quantitatively measure the feature alignment, we need tools to locate important features to the model

and truly important features from humans’ perspective, in addition to a metric to compare their similarity.

Feature attribution is a set of faithful tools that help to quantify the importance score of each input towards

the model’s decision at an input x. We compare these important features with the bounding box of object in

77
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an image because it includes a human-labeled region that is associated with the label. That is, we consider

input features in the bounding box is truly important. Similar to precision, recall and the F1-score, which

are used to evaluate the quality of localization, we propose Pre, Rec and F1 locality scores for evaluating

the alignment between attributions and the bounding boxes. That is, a higher geometrical mean, i.e. F1,

of Pre and Rec indicates that attributions better align with the bounding box so the underlying model is

aligned more on features with humans.

With the attribution-based locality metric(s), the thesis demonstrates that the Rec-locality scores of state-

of-the-art deep classifiers on ImageNet, e.g.Vision Transformers (ViT) and ResNets, are not significantly

improved compared to the outdated VGG nets and SqueezeNets and a random network. To improve the

locality, the thesis shows the promise of adversarial robustness, which refers to the resistance of a model’s

prediction against imperceptible and adversarial noise. Our experiments on ImageNet show that improved

robustness leads to improved locality over all tested models. Furthermore, more robust models have higher

locality than the less robust ones, demonstrating that robustness is necessary for realizing feature alignment

for classification tasks.

Our evaluation shows that improving robustness is an effective way to improve the locality of the model

compared to only focusing on the accuracy of benign examples. Thus, the rest of the thesis focuses on

techniques that can further improve the existing achievements on training robust models.

Recent work in training robust models is often blocked by the phenomena of robust overfitting, which

entails a generalization gap between the test robustness and the training robustness. In particular, such

gap is often larger than the generalization gap between the performance of the underlying model on

benign images. In principle, there is no limitation that would prevent one from learning a robust and

well-generalized function, as evidenced by the fact that humans are well-generalized and robust. In learning

theory, Probably Approximately Correct-Bayesian (PAC-Bayesian) theory provides a way to characterize

the test performance of any classifier. Our work therefore aims to directly minimize the PAC-Bayesian

generalization bound for robustness, while prior works have skipped the minimization step and directly

used the initial and loose bound. We demonstrate a practical use of our minimized PAC-Bayesian bound

for alleviating robust overfitting, which includes a new TrH Regularization term for the top layer of the

network during the training. Our empirical evaluations on CIFAR-10, CIFAR-100, and ImageNet with ViTs

create new state-of-the-art robust accuracy under both ℓ2- and ℓ∞-norm-bounded adversaries.

However, care must be taken that empirical evaluation for robustness does not guarantee that the

model is indeed robust because there could be attacks that adapt to the defense to break the defense in

the future. In network verification, certifying the robustness requires a lot more resources than empirical

attacks and can only finish for small architectures. In this thesis, we introduce a novel set of networks,



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 79

GloRo Nets, which are built with an instant robustness certification layer based on the global Lipschitz

constant of the model and thus have the potential to certify much deeper architectures. GloRo Nets output

a new class, ⊥, that can be interpreted as abstention from inference if robustness at this point can not

be certified and a regular class integer otherwise. Notice that our certification is deterministic so there

will be not false positive case. The benefit of using a global Lipschitz constant is that this is a one-time

computation for all inputs; therefore, the certification cost during the test is as fast as doing standard

inference — namely, the certification is instant. Focusing on ℓ2-norm-bounded adversaries, GloRo Nets

have shown the state-of-the-art provable robustness on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet

with a deterministic guarantee.

6.2 Limitation of Robustness

While robustness is a necessary step to ensure aligned perception with humans, it is not sufficient to

address all issues. One limitation considered in this thesis is an out-of-distribution (OOD) input. A

specific use of OOD usually refers to points sampled from a shifted distribution to the training distribution,

whereas here we use OOD to generally refer to points that the model has not seen before. So an OOD

point can be an adversarial point or a point does not fall into any of the classes. Consider we are given a

robust binary classifier that can tell the difference between a cat and a dog. The model was built with a

robustness guarantee to use features that align better with human perceptions to differentiate between the

two classes. However, if the model is given an image consisting of random noise that does not have any

semantically meaningful features, it would be considered an OOD input. Nonetheless, the model could

still classify this OOD input into either cat or dog robustly if the input is sufficiently far away from the

decision boundary. In addition, the robust binary classifier may also classify other images that are similar

but not exactly the same as the training examples into existing classes, such as a wolf that is similar to

but not a dog. While these classifications may not be desired for the classifier, it is still possible for the

model to make a prediction with high confidence based on the available features. Figure 6.1 illustrates this

concern with more examples.

The problem of (robust) classification on out-of-distribution (OOD) inputs arises from the task being

under-specified. Specifically, we have only provided a specification for the network to (robustly) classify

the in-distribution points, such as cats and dogs in our previous examples, but not for OOD points.

Geometrically, the decision boundary extends to infinity in the input space and over-extrapolates the

function learned from in-distribution samples provided during the training. This issue cannot be completely

resolved by enforcing robustness since a non-closing decision boundary can also be present in a robust
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Figure 6.1: Plot of a limitation of robustness for predicting out-of-distribution inputs, which is not aligned
with what humans would respond to the input, e.g. abstention. The nature of this issue is that deep models
over-extrapolate (outside the dotted circle in blue) the function learned from in-distribution points to the
infinity so the decision boundary is not closed.

model as illustrated in Figure 6.1.

6.3 Future Work: Selective Classification

A related line of work that has potential to address the non-closing decision boundary is selective classification,

which often consists of a classification network f : Rd → Rm and a rejection network g : Rd → {0, 1}. The

output label of a selective classifier is f (x) if g(x) > 0 and ⊥ otherwise. That is, g(x) determines whether

we should reject the current input and abstain the prediction by outputting ⊥.

Prior works on determining the portion of points that should be rejected (i.e. g(x) = 0) is mainly

based on estimating the uncertainty in the prediction of f (x) (Dusenberry et al., 2020; Gal & Ghahramani,

2016; Lakshminarayanan et al., 2017; Maddox et al., 2019). Recent works decide to set a threshold for

the percentage of points that the model should reject in the training stage and maximize the model’s

performance on the rest accepted data (Feng et al., 2023; Geifman & El-Yaniv, 2019; Huang et al., 2020;

Ziyin et al., 2019). These approaches often involve a stand-alone g, which is trained together with f .

However, as experiments have shown that the model’s prediction on adversarial points can be confi-

dent (Madry et al., 2018a), it is unclear whether the prior works will result in a robust classifier f and a

robust rejection model g. The consequence of non-robustness has been shown in detail in previous chapters

– they are not well-aligned with humans’ perception. Thus, for selective classification to be useful to address
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the uncovered limitation of robustness, it must be robust to begin with.

Comparing to OOD Detection. Another related line of work that has a close functionality with g is to

train an OOD detector and stack it with the classification model f . Many OOD detection algorithms are

offline and independent of the training algorithms and the classifier f . As a result, the objectives between

the OOD detector and the classifier f can be mis-calibrated. While the detector aims to clean the data

and reduce the unnecessary variance in the sample set, the classifier could have the capacity to adapt the

complex distribution in the data but is not given the chance. Therefore, an OOD detector that adapts to the

classifier and only rejects the points that the current classifier is not capable of predicting is more proper

and effective use of the capacity of deep nets.

Unlike existing works that determine the rejection using another network g, GloRo Nets introduced

in Chapter 5 is an end-to-end design where g is by construction if the output logit of the ⊥ class is

higher than the top logit output. However, as we point out the limitation of robustness in learning closed

decision boundary, the rejection rule of GloRo Nets needs to be more general for invalid points with

non-robust reasons, i.e. being out of the classes the model has seen before. The next section introduces a

new research direction, which we will term as Centroid Net with rejection. The advantage of Centroid Nets

over conventional classifiers and GloRo Nets is a unified way to only predict for in-distribution points and

reject out-of-distribution (i.e. invalid) points. We begin with a standard Centroid Net without rejection in

Section 6.3.1 and later introduce the rejection rule in Section 6.3.2. As a proof of concept, we provide a set

of analytical results and preliminary empirical evidence of justify the promise of studying and improving

Centroid Nets for better alignment.

6.3.1 Standard Centroid Nets

The core component of a standard Centroid Net is a Centroid layer, which is essentially a parametric

version of an 1-Nearest Neighbor (1-NN) classification model. Recall that the conventional 1-NN model

assigns the label of a test input with the label of the nearest training point so 1-NN is parametric-free. In

Centroid layer, the training points are replaced with trainable class centroids in the latent space. As a result,

we are comparing the distances between the latent feature vectors encoded by the bottom network with

class centroids and assign the label to the input with the label of these centroids.

Formally, recall that in Chapter 2 we use f : Rd → Rm to denote a neural network that takes an

input x ∈ Rd and outputs a logit vector for m classes. We use the uppercase F : Rd → [m] to denote the

integer prediction of the network such that F(x) = arg maxj f j(x). To separate the Centroid layer with

the bottom feature encoder, similar to Chapter 4, let θ = {θc, θb} where θc denotes the weights, i.e. vector
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Figure 6.2: Visualization of the Voronoi diagram in the latent space of Centroid Nets with five 2-dimensional
centroids.

representation of centroids, of the top Centroid layer, cnt, and θb denotes the weights of f until cnt. Suppose

there are C centroids and the number of dimensions for each centroid is c, i.e. ∀j ∈ [C], {θc}j ∈ Rc. By

setting C to be fully dividable by the number of classes m, i.e. k = C/m is an integer, we assign k centroids

with the same class label. We will later use {θc}label
j to denote the label of the j-th centroid. Finally, the

forward pass of f with parameter θ = {θc, θb} is as follows,

f (x; θ) = cnt(z; θc), z = f (x; θb).

Here z = f (x; θb) is the output of the penultimate layer, i.e. the latent representation of x, and z ∈ Rc so

we can compute the distance between z and centroids θc in following cnt layer. The forward pass of cnt is

inspired by a 1-NN model. The only difference is that cnt needs to output a continuous vector so we can

use it as the logit of x. For this purpose, cnt will output the negative distance to each nearest class centroid

as the logit. Formally, we define

{cnt(z; θc)}j = max
∀i,{θc}label

i =j
−∥{θc}i − z∥2. (6.1)

Geometry of the Latent Space. With cnt layer, the latent space of Centroid Nets can be partitioned into C

(i.e. the number of centroids) polytopes. For any points in the same polytope, their nearest neighboring

centroid is the same as illustrated in Figure 6.2. This is known as the equivalence between an 1-NN classifier

and a Voronoi diagram (Senechal, 1993), a way to partition a space into sub-spaces close to each of a given

set of points. Centroids are thus the Voronoi vertices in the latent space of the underlying Centroid Net.

Because we are using ℓ2 distance to measure the similarity in Equation 6.1, the resulting sub-spaces are all

convex, i.e. polytopes. The boundary between a neighboring pair of polytopes is a also decision boundary
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if the neighboring centroids belong to different classes.

6.3.2 Centroid Net That Opts to Reject

Distance-based classification in cnt provides a way to abstain from prediction, which we refer to as a

rejection option, if the latent representation of the input is (1) too far away from all centroids; and (2) is pretty

close to at least two centroids. Condition (1) can be seen as the case when the model is given an input that

is not similar to any of known classes. Similar to humans, the model is expected to answer something

equivalent to "I don’t know" instead of making a prediction. Rejecting points that fall into condition (1)

is therefore a desired behavior for well-aligned models. On the other hand, condition (2) corresponds to

the case when the model is given an input that is similar to more than one classes at the same time. This

could an image of multiple objects, e.g. dogs and cats, or an adversarial image. Rejecting images with

confusing labels or adversarial features is also desired for well-aligned classifiers that are only allowed to

give a single label to the input.

We now propose a rejection-based Centroid layer, i.e. η-Centroid Layer (Definition 22), to unify

conditions (1) and (2) as a single rule.

Definition 22 (η-Centroid Layer) For a standard Centroid layer, cnt(z; θc), defined in Equation 6.1 and let

y = arg maxi{cnt(z; θc)}i. The output of a Centroid layer with a ⊥ logit, cntη(z; θc), is equal to

∀j ∈ [m] ∪ {⊥}, {cntη(z; θc)}j =
{ {cnt(z; θc)}j if j ̸= ⊥

1−η
1+η · {cnt(z; θc)}ysec otherwise

, (6.2)

and ysec = arg max
i ̸=y
{cnt(z; θc)}i, (6.3)

where η ∈ [0, 1] is a hyper-parameter for the rejection threshold.

Put it simple, η-Centroid Layer has an additional logit output of a class, which we term as ⊥, that

indicates if we should reject the input. If logit score of the ⊥ surpasses the top logit score of a valid class,

i.e. any j ∈ [m], the Centroid Net would output ⊥ as the prediction, which we will interpret as a rejection

or "I don’t know". The logit score of ⊥ is based on the second highest logit score among the valid classes

and a hyper-parameter η ∈ [0, 1]. By the design of cntη(z; θc), we can prove Theorem 7.

Theorem 7 (Rejection Criteria for η-Centroid Layer) Let Fη : Rd → Rm denote the interger prediction of a

Centroid Net with a η-Centroid Layer, cntη(z; θc), on the top. z = f (x; θb) is the penultimate output of Fη and θc



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 84

Figure 6.3: An illustration of the partitions of the latent space of a Centroid model with rejection cntη .
The output labels of latent representations in gray are ⊥, i.e. rejection, because of insufficient differences
between distances to the nearest and the second nearest centroid. Curves in red and green are the decision
boundaries for cntη , while the broken line is the decision boundary for a corresponding cnt layer, i.e.
without rejection.

are centroids.

∀x ∈ Rd, Fη(x) ̸= ⊥ =⇒ ∥z− {θc}2∥2 − ∥z− {θc}1∥2 ≥ η(∥z− {θc}1∥2 + ∥z− {θc}2∥2),

and here z = f (x; θb).

We use {θc}1, {θc}2 to denote the nearest centroid to z and the second-nearest centroid to z that has a different label

from {θc}1, respectively.

That is, if a Centroid Net outputs a label other than ⊥, then the nearest centroid must be close enough

to the latent representation z of the input. Our design of the condition of "closeness" includes a comparison

between the ratio of the difference of distances over the sum of distances with a threshold η. There are two

situations will cause the difference of distances to be less than η times the sum of distances as illustrated in

Figure 6.3. That is, when (1) z is far away from the top-2 closest centroid {θc}1 and {θc}2; or (2) z is close

to {θc}1 and {θc}2 and the difference of distance is not distinguishable w.r.t η.

It is noticeable that cntη has a closed boundary between rejection and valid class, which results in a

closed decision boundary in the input space. When η = 0, there is no rejection and cntη reduces back to a

standard Centroid layer without rejection and η = 1 makes the model reject everything. Interesting, the

closest distance between points on the rejection boundaries corresponding to different centroids, i.e. the

red and blue ones in Figure 6.3, are the ones on the line that connects two centroids. Formally, we can

prove the following Theorem 8.
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Theorem 8 Suppose Fη : Rd → [m] ∪ {⊥} is a Centroid Net with rejection and f (x; θb) is the penultimate output

of F. If f (·; θb) is K-globally Lipschitz continuous,

∀x′ ∈ Rd, ∥x′ − x∥2 ≤ (1 + η)
dmin

K
=⇒ Fη(x′) = Fη(x) or Fη(x′) = ⊥ or Fη(x) = ⊥ (6.4)

and here dmin = min
y∈[m],j∈Iy

[
min

y′ ̸=y,i∈Iy′
∥{θc}j − {θc}i∥2

]
,

where Iy = {k|{θc}label
k = y}, a set of indices of centroids whose labels are y.

The RHS of Equation 6.4, i.e. a = b or a = ⊥ or b = ⊥, is also referred to as a property of global

robustness (Leino et al., 2021b) so Theorem 8 shows that a Centroid Net Fη is preserves the property of

global robustness at least in the neighborhood with a radius of (1 + η)dmin/K. It is useful to have global

robustness at x because it ensures that if Fη does not reject x, the neighbors of x will either have the same

predictions as x or get rejected. The radius of the ball depends both on the nearest distances between

class centroids, dmin, and the Lipschitz constant of the feature encoder, K. This is intuitive as centroids are

distant from each other, the margins between each other get greater, where the margin in the latent space is

connect to the distance in the input space by the Lipschitz constant. Interestingly, based on our design

of rejection and its illustration in Figure 6.3, (1 + η)dmin/K is actually the smallest "width" of the band

between two different classes where Fη rejects the input. As a result, for points that are not on the line

between any pairs of class centroids, the actual ball that one can certify global robustness for Fη is greater

and the radius is the distance between x and the hyperplane that is equal distant to the pair of centroids.

This property finally ensures that the decision boundary for Fη is closed in the latent space and should not

extends to the infinity in contrast with conventional classifiers.

Comparing with GloRo Nets. GloRo Net (as is discussed in Chapter 5) is probably the most similar

technique to Centroid Net with a rejection option. The difference is that a GloRo Net returns ⊥ because the

local robustness can not be certified at x, while a Centroid Net returns ⊥ because the point is not close

enough to the nearest centroid in the latent space. It is interesting to do do a head-to-head comparison

with GloRo Nets using Centroid Nets. We include Example 2 using TwoMoons dataset as a preliminary

study in this Chapter for showing the promise of Centroid Nets.

Example 2 We train a GloRo Net and a Centroid Net with rejection on TwoMoons dataset with the training and

test sets illustrated in Figure 6.4. For the test set, we inject Gaussian noise with a probability of 0.2 to make the test

distribution shifted from training. We delay the details of training and architectures to Appendix ??. We plot the

decision boundaries of two networks on the right of Figure 6.4, where purple and green points and regions are labeled

with 0 and 1, respectively. Gray regions and yellow points are labeled with ⊥ by two networks, respectively.
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Train

Test

GloRo Net Centroid Net

Figure 6.4: Plots of decision boundaries of a GloRo Net and a Centroid Net (with rejection) trained on
TwoMoons. Yellow points are labeled as ⊥ by the network, i.e. rejection from prediction, in both plots.

It is noticeable that in the test set shown in Figure 6.4 there are outliers for each moon, which either

sit far away from the entire moons or in the middle of two halves. In the plot of GloRo Net, because the

decision boundary is not closed, we see that only outliers that in the middle of two halves are rejected for

the reason of the lack of local robustness. Other outlying points, even though they are perturbed and far

away from moons, are classified into one of the moons robustly. On the other hand, the Centroid Net on

the right in Figure 6.4 rejects these outlying noisy points which are far away from moons. In the same time,

it is able to reject points in the middle of two moons as well. Care must be taken that because Centroid Net

does not directly specify the radius ϵ in the input space, so the resulting minimum width of the rejection

band, i.e. the narrowest place in the gray region, is smaller than that of the GloRo Net on the left. However,

we argue that this can be fixed in the training when the objective function is carefully designed to entail a

requirement of larger rejection band, e.g. making centroids further away. On the other hand, our plots

may point out Centroid Nets are probably a better fit for tasks that have a higher tolerance for confusing

better similar classes, e.g. sports car and sedan, but have a low tolerance of letting invalid input enter

the system and receive a meaningful prediction.

Local Robustness of Centroid Nets. Another benefit of training a Centroid Net with rejection, Fη , is that

its corresponding standard version, F, can be shown to preserve the property of local robustness shown in

Theorem 9.

Theorem 9 With definitions in Theorem 8, let F be the corresponding Centroid Net without rejection of Fη . Then, F
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is ϵ-locally robust ((Definition 11) and

ϵ = (1 + η)
dmin
2K

.

6.3.3 Self-explainability of Centroid Classification

Compared to a conventional neural network, a Centroid Net is based on the similarity between the encoded

features z = (x; θb) and the centroids θc to predict the label for x. As a result, it is naturally to think θc

as a set of typical representations of classes and it is interesting for the users to compare the given input

with an input xp such that f (xp; θb) equals to the nearest centroid to f (x; θb) in the latent space. We refer

to the input point, whose latent representation is the nearest centroid to the latent representation of x, as

the prototype of x. Formally, we introduce the following Definition 23.

Definition 23 (Prototype) Suppose θt is a set of centroids of a Centroid Net f and θb is the weights of the

sub-network below the Centroid layer. The prototype xp for a given input x is equal to

xp = arg max
x′
−∥ f (x′; θb)− {θc}j∥2,

where {θc}j = arg max
i
−∥ f (x; θb)− {θc}i∥2.

A prototype xp of x can be used as an instance-based explanation for the prediction returned by the

Centroid Net, as it gives an example point that the underlying Centroid Net believes to be typical for the

corresponding class. On the other hand, assessing if these prototypes are perceptually meaningful helps us

to understand whether the Centroid Net aligns with humans.

6.3.4 Summary

In the first part of this section, we discuss the potential of selective classification in closing the decision

boundary for rejecting inputs that are invalid to the underlying model, adding an option of I Don’t Know to

the network. We discuss the prior works and motivate that we need a new technique that is both aware of

robustness and out-of-distribution points. In the second part of this section, we introduce a new type of

deep classifier, Centroid Nets, with and without an option to reject an input for a lack of confidence that

the input belongs to the distribution the model is trained with. For a proof of concept, we provide a set

of analytical results to describe the guarantee provided by a Centroid Net and include an example with

TwoMoons dataset to illustrate the difference between a GloRo Net and of a Centroid Net. As a promising

technique to realize selective classification, Centroid Nets with rejection are capable of learning closed

decision boundaries and provide (global) robustness guarantee at the same time. More importantly, unlike
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a conventional network, Centroid Nets are self-explainable by construction – by finding the corresponding

prototype inputs of the centroids, the users can easily assess and verify whether the model has found

perceptibly meaningful commonality among the training sample. Completing and improving the idea of

Centroid Nets is a future work of the author for addressing the under-specification issue of deep networks

to enhance alignment.



Appendix A

A Brief Review of Explainability Methods

To date, there is a large body of work delivering different types of explanations to answer different questions,

raised by human users, about the model. Here we list some common questions and corresponding

explanations developed in the prior works.

What is the most similar training instance that the model relies on to predict for the underlying

instance? . This question is interested in the influence of the training set on the model’s weights and the

corresponding method is referred to as instance-based explanation (Das et al., 2021; Han & Tsvetkov, 2021; Jia

et al., 2019; Koh & Liang, 2017; Lin et al., 2022; Pruthi et al., 2020; Schioppa et al., 2022; Yeh et al., 2018);

Where can we find a different input that can cause a different (or desired) output? The technique that

answers this question is often referred to as counterfactual explanation (Black et al., 2022; Karimi et al., 2020;

Keane & Smyth, 2020; Mahajan et al., 2019; Mothilal et al., 2020; Pawelczyk et al., 2020; Poyiadzi et al., 2020;

Ustun et al., 2019; Van Looveren & Klaise, 2019; Yang et al., 2020a);

What high-level concepts can we extract from the learned representations? To answer this question,

a popular approach is T-CAV (Kim et al., 2018; Yeh et al., 2020), which checks the model’s internal

representations for their response to well-crafted inputs that only contain specific “concepts", e.g. stripes

and rectangles.

What is the most important feature to the model’s inference result? The technique that answers this

question is often referred to as feature attribution, which assigns a scalar value for each input feature for

its importance towards a quantity of interest, e.g. the output logit of the top class (Binder et al., 2016;

BOHNENBLUST et al., 1952; Erion et al., 2021; Fong & Vedaldi, 2017; Ghalebikesabi et al., 2021; Leino et al.,

89



APPENDIX A. A BRIEF REVIEW OF EXPLAINABILITY METHODS 90

2018; Lundberg & Lee, 2017; Pan et al., 2021; Petsiuk et al., 2018; Ribeiro et al., 2016; Selvaraju et al., 2019;

Shrikumar et al., 2017; Simonyan et al., 2013; Smilkov et al., 2017; Sundararajan et al., 2017; Wang et al.,

2020a, 2022).



Appendix B

Futher Details on Locality Evaluations for

Non-robust Models

B.1 Implementation of Boundary Search in BIG

Our boundary search uses a pipeline of PGDs and CW Nicolae et al. (2019). PGDs is a repetition of

PGD Madry et al. (2017) attack with larger ϵ until an adversarial example is found. Adversarial examples

returned by each method are compared with others and closer ones are returned. If an adversarial example

is not found, the pipeline will return the point from the last iteration of the first method (PGDs in our

case). Hyper-parameters for each attack can be found in Table B.1. The implementation of PGDs and

CW are based on Foolbox (Rauber et al., 2017, 2020). We have also tried to assemble with another attack,

AutoPGD (Croce & Hein, 2020a), and find adding another attack does not improve the successful rates

or decrease the distances to the boundary so we decide only rely on PGDs and CW. For details of the

experiments, please refer to Appendix B.2.

B.2 An attempt of ensembling with AutoPGD

We implement AutoPGD based on the authors’ public repository1 (we only use apgd-ce and apgd-dlr

losses for efficiency reasons). All computations are done using a GPU accelerator Titan RTX with a memory

size of 24 GB. Comparisons on the results of the ensemble of these three approaches are shown in Fig. B.2.

Ideally, we want to have higher success rates or closer distances between the adversarial examples to

the input so the attack better approximates the boundary search. However, on ResNet50, we did not find

1https://github.com/fra31/auto-attack
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PGDs ImageNet standard

ϵs [36/255., 64/255., 0.3, 0.5, 0.7, 0.9, 1.1]
max steps 100
step size adaptive

CW ImageNet standard

ϵ 1.0
max steps 100
step size 1e-2

Table B.1: Hyper-parameters used for adversarial attacks. adaptive means the actual step size is determined
by 2 ∗ ϵ / max steps.

Pipeline Avg Distance Success Rate
(ImageNet) Standard ResNet50

PGDs 0.549 72.1%
+ CW 0.548 72.1%

+ AutoPGD 0.548 72.1%

Table B.2: Pipeline: the methods used for boundary search. Avg Distance: the average ℓ2 distance between
the input to the boundary. Success Rate: the percentage when the pipeline returns an adversarial example.
Time: per-instance time with a batch size of 64. We are using much bigger ϵs for robust models, so the
success rates are higher than a standard model.

any improvement by using AutoPGD. As a result, we decide not to use this attack for the rest of models

and other experiments.

B.3 Implementation of attributions

All attributions are implemented with Captum (Kokhlikyan et al., 2020). For BIG and IG, we use 20 interme-

diate points between the baseline and the input and the interpolation method is set to riemann_trapezoid.

B.4 Pre and Rec Locality Scores

In addition to Figure 3.2, we include plots of Pre (Figure B.1) and Rec (Figure B.2) locality scores with SM,

IG and BIG on every models.

In Figure B.1, we find that as the accuracy improves from SqueezeNet to ViT-B16, Pre-scores are still

around 0.5 in the plots of SM and IG. Furthermore, they are close to the Pre-score computed on a random

model (shown by the horizontal lines on the plots). Pre-scores in the BIG plot are more different from

the one computed on the random model but it is still hard to see an improvement of the precision from

improved accuracy. In particular, we find two attention modesl, i.e. ViT-B16 and ViT-B32, have lower

Pre-scores compared to the rest convolutional models, despite the fact they are more accurate. A lower

precision indicates that more positive attribution scores are distributed outside the bounding box. That is,
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Figure B.1: Plots of Locality v.s. Top-1 Accuracy for several pre-trained models. We measure Pre-scores
of locality (Definition 9) with Saliency Map (left), Integrated Gradient (middle) and Boundary-based
Integrated Gradient (right). Results of averaged over 1000 images.

Figure B.2: Plots of Locality v.s. Top-1 Accuracy for several pre-trained models. We measure Rec-scores
of locality (Definition 9) with Saliency Map (left), Integrated Gradient (middle) and Boundary-based
Integrated Gradient (right). Results of averaged over 1000 images.

important features to the model are those ones that are very different from the truly important features

from humans’ perspective.

In Figure B.2, we find that all models have approximately 0.5 Rec-scores on locality measured with

SM or IG, indicating an almost even mixture between useful and anti-useful features inside the bounding

box. This observation shows that in a standard model, when a pixel is point-wise or globally important,

its neighbors are very likely to have an opposite sign of importance. In the plot of BIG, we finally see

some improvement of locality measured with Rec-scores as the accuracy goes up. However, because that

corresponding precision is very low as shown in Figure B.1, a high recall only means a high portion of

positive attributions both inside and outside the bounding box.



Appendix C

Futher Details on GloRo Nets

Chapter 5 summarizes results from our ICML-2021 paper Globally Robust Neural Networks (Leino et al.,

2021b) and its follow-up work Scaling in depth: Unlocking Certifiable Robustness on ImageNet (Hu et al.,

2023). Our implementation can be found at Github: https://github.com/klasleino/gloro. When the

follow-up work (Hu et al., 2023) is public, we have updated our implementation of GloRo Nets with

new hyper-parameters so the results in Chapter 5 align best with Hu et al. (2023), which we refer the

implementation to if not otherwise clarified.

C.1 Implementation Details for Table 5.1

C.1.1 Training details

Dataset details The input resolution is 32 for CIFAR10/100, 64 for Tiny-ImageNet and 224 for Ima-

geNet respectively. We apply the following data augmentation to CIFAR datasets: random cropping,

RandAugment (Cubuk et al., 2020), random horizontal flipping. For Tiny-ImageNet, we find this dataset is

easy to overfit and add an extra Cutout (DeVries & Taylor, 2017) augmentation. For data augmentation

hyper-parameters, we use the default PyTorch setting.

Platform details Our experiments were conducted on an 8-GPU (Nvidia A100) machine with 64 CPUs

(Intel Xeon Gold 6248R). Each experiment on CIFAR10/100 and Tiny-ImageNet takes one GPU and each

experiment on ImageNet takes 8 GPUs. Our implementation is based on PyTorch (Paszke et al., 2019).

Training details On the first 3 datasets, all models are trained with the NAdam (Dozat, 2016) with the

Lookahead optimizer wrapper (Zhang et al., 2019d) with a batch size of 256 and a learning rate of 10−3 for

800 epochs. We use a cosine learning rate decay (Loshchilov & Hutter, 2016) with linear warmup (Goyal
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et al., 2017) in the first 20 epochs. On ImageNet, we only change the batch size to 1024 and training epochs

to 400.

During training, we schedule the training ϵ to ramp up from small values and slightly overshoot the

test epsilon. Let the total number of epochs be T and the test certification radius be ϵ, we use

ϵtrain(t) =
(

min(
2t
T

, 1)× 1.9 + 0.1
)

ϵ, ϵ = 36/255.

at epoch t. As a result, ϵtrain(t) begins at 0.1ϵ and increases linearly to 2ϵ before arriving halfway through

the training. Later, ϵtrain remains 2ϵ to the end.

C.1.2 LiResNet architecture details

Model stem is used to convert the input images into feature maps. On CIFAR10/100, we use a convolution

with kernel size 5, stride 2, and padding 2, followed by a MinMax activation as the stem. On Tiny ImageNet,

we use a convolution with kernel size 7, stride 4, and padding 3, followed by a MinMax activation as

the stem. On ImageNet, we follow the ViT-like patching (Dosovitskiy et al., 2020) and use a convolution

with kernel size 14, stride 14, and padding 0, followed by a MinMax activation as the stem. Thus the

output feature map size from the stem layer is 16× 16 for all 4 datasets. The number of filters used in the

convolution is equal to the model width W.

Model backbone is used to transform the feature maps. It is a stack of L LiResNet blocks followed by

the MinMax activation, i.e., (LiResNet block→ MinMax)× L. We keep the feature map resolutions and

the number of channels constant in the model backbone. We find some tricks in normalization-free residual

network studies (Shao et al., 2020; Zhang et al., 2019a) can improve the performance of our LiResNet as our

method is also a normalization-free residual network. Specifically, we add an affine layer β that applies

channel-wise learnable multipliers to each channel of the feature map (similar to the affine layer of batch

normalization) and a scaler of 1/
√

L to the residual branch where L is the number of blocks:

y = x +
1√
L

βConv(x)

Model neck is used to convert the feature maps into a feature vector. In our implementation, the model

neck is a 2 layer network. The first layer is a convolution layer with kernel size 4, stride 4, and padding 0,

followed by a MinMax activation. The number of input channels is the model width W and the number

of output channels is 2W. Then we reshape the feature map tensor into a vector. The second layer is

a dense layer with output dimension d where d = 2048 for the three small datasets (CIFAR10/100 and

Tiny-ImageNet) and d = 4096 for ImageNet.
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Table C.1: Clean accuracy and VRA performance (%) of a ConvNet and a LiResNet on three datasets with
different loss functions

loss TRADES EMMA
Clean (%) VRA (%) Clean (%) VRA (%)

CIFAR-10 (ϵ = 36/255, 10 classes)

ConvNet 71.7 58.8 72.5 59.2
LiResNet 79.6 66.2 80.4 66.3

CIFAR-100 (ϵ = 36/255, 100 classes)

ConvNet 53.4 34.0 50.6 35.0
LiResNet 57.8 37.3 54.2 37.8

Tiny-ImageNet (ϵ = 36/255, 200 classes)

ConvNet 42.2 26.6 40.0 27.4
LiResNet 45.8 28.8 43.6 30.0

Model head is used to make classification predictions. We apply the last layer normalization (LLN)

proposed by Singla et al. (2022) to the head.

C.1.3 Metric details

We report the clean accuracy, i.e., the accuracy without verification on non-adversarial inputs and the

verified-robust accuracy (VRA), i.e., the fraction of points that are both correctly classified and certified as

robust. Our results are averaged over 5 runs for CIFAR10/100 and TinyImageNet and 3 runs for ImageNet.

C.2 Details for Table 5.2

In Table 5.2a, we use an L12W256 configuration, i.e., the backbone has 12 blocks and the number of filters

is 256. For ConvNet, the only difference is that the LiResNet block is replaced by a convolution of kernel 3,

stride 1, and padding 1. All other settings are the same. Table C.1 is a more detailed version of Table 5.2a

with clean accuracy.

In Table ??b, we use the configuration of W256, i.e., the number of channels in the backbone is 256. The

only difference between conventional ResNet and LiResNet is the block. The block for conventional ResNet

is

y = x + βConv(MinMax(Conv(x)))

where β is the affine layer. We find use zeros to initialize β works the best for conventional ResNet. The

number of input and output channels of the two convolution layers are the same as that of the LiResNet

block. Table C.2 is a more detailed version of Table 5.2b with clean accuracy.
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Table C.2: Clean accuracy and VRA (%) performance on CIFAR-10/100 with different architectures (L is
the number of blocks in the model backbone). We use EMMA loss for Gloro training. × stands for not
converging at the end.

Dataset L ConvNet ResNet LiResNet
Clean(%) VRA(%) Clean(%) VRA(%) Clean(%) VRA(%)

6 77.9 64.0 74.2 60.3 79.9 65.5
CIFAR-10 12 72.5 59.2 74.0 60.0 80.4 66.3

18 × × 73.9 60.1 81.0 66.6

6 51.8 36.5 48.4 33.5 53.6 37.2
CIFAR-100 12 50.6 35.0 48.1 33.5 54.2 37.8

18 × × 48.2 33.6 54.3 38.0

Table C.3: Clean accuracy and VRA (%) performance of LiResNet of different depths (L is the number of
blocks in the model backbone).

L CIFAR10 CIFAR100 Tiny-ImageNet
Clean(%) VRA(%) Clean(%) VRA(%) Clean(%) VRA(%)

6 79.9 65.5 53.6 37.2 43.1 29.8
12 80.4 66.3 54.2 37.8 43.6 30.3
18 81.0 66.6 54.3 38.0 43.9 30.6
24 81.2 66.8 55.0 38.2 44.2 30.7
30 81.3 66.9 54.9 38.4 44.2 30.6
36 81.2 66.9 55.0 38.3 44.3 30.4

C.3 Optimizing for Lipschitz Lower Bounds in Table 5.3

Figure 5.3 gives empirical lower bounds on the global and average local Lipschitz constants on the models

trained in our evaluation. We use optimization to obtain these lower bounds; further details are provided

below.

Global Lower Bounds. We use the margin Lipschitz constant, K∗ij which takes a different value for each

pair of classes, i and j. To obtain the lower bound we optimize

max
x1,x2

max
i

{∣∣ f j1(x1)− fi(x1)−
(

f j1(x2)− fi(x2)
)∣∣

||x1 − x2||

}
where j1 the predicted. Optimization is performed using Keras’ default adam optimizer with 7,500 gradient

steps. Both x1 and x2 are initialized to random points in the test set; we perform this optimization over 100

such initial pairs, and report the maximum value obtained over all initializations.

Local Lower Bounds. We use a variant of the margin Lipschitz constant (Definition ?? in Appendix ??)

analogous to the local Lipschitz constant at a point, x0, with radius ϵ. To obtain this lower bound we



APPENDIX C. FUTHER DETAILS ON GLORO NETS 98

optimize

max
x1,x2

max
i

{∣∣ f j(x1)− fi(x1)−
(

f j(x2)− fi(x2)
)∣∣

||x1 − x2||

}
subject to ||x1 − x0|| ≤ ϵ, ||x2 − x0|| ≤ ϵ

where j = F(x0). Optimization is performed using Keras’ default adam optimizer with 5,000 gradient

steps. After each gradient step, x1 and x2 are projected onto the ϵ-ball centered at x0. Both x1 and x2 are

initialized to random points in the test set, and x0 is a fixed random point in the test set. We perform this

optimization over 100 random choices of x0, and report the mean value.



Appendix D

Futher Details on PAC-Bayesian Bound and TrH

Regularization

D.1 Theorems and Proofs

D.1.1 Proof of Theorem 4

Theorem 4 If P = N (0, σ2
0 ), and Q is also a product of univariate Gaussian distributions, then the

minimum of Eq. 4.5 w.r.t Q can be bounded by

min
Q

Eθ∈QR(θ,D)

≤min
Q
{Eθ∈QR̂(θ, Dn) +

1
β

kl(Q||P)}+ C(τ, β, m)

=min
θ
{R̂(θ, Dn) +

||θ||22
2βσ2

0
+

σ2
0

2
Tr(▽2

θ R̂(θ, Dn))}+ C(τ, β, m) + O(σ4
0 ).

Proof. Before we begin our proof, we emphasize that the posterior Q that minimizes the test loss may

not be the same posterior Q that minimizes the training loss. Namely, define

Qtest = arg min
Q

Eθ∈QR(θ,D)

Qtrain = arg min
Q
{Eθ∈QR̂(θ, Dn) +

1
β

kl(Q||P)},

then Qtest may not be equal to Qtrain. However, the following inequality clearly holds based on their

definitions,

Eθ∈Qtest R(θ,D) ≤ Eθ∈Qtrain R(θ,D) ≤ Eθ∈Qtrain R̂(θ, Dn) +
1
β

kl(Q||P) + C(τ, β, m).

Generally speaking, it is impossible to directly find Qtest without knowing the true data distribution D.

Thus, Theorem 4 attempts to derive Qtrain to minimize the RHS of Eq. 4.5. When it is clear which optimal

99
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posterior, i.e. Qtrain instead of Qtest, we can derive in the theorem, we omit the subscription and directly

write Q.

Proof Overview. Based on our assumptions, we write Q = N (θ, Σ) where Σ is the (diagonal) covariance

matrix. The minimization of the bound w.r.t Q is to minimize the bound w.r.t Σ and θ. Our proof is

therefore three-fold: (1) firstly, we write the expression of kl(Q||P) using θ and Σ; (2) secondly, we use a

second-order Taylor expansion to decompose Eθ∈QR̂(θ, Dn) into terms as functions of Σ and θ; and (3)

finally, we minimize the bound w.r.t Σ for two cases: all weights have the same or different variances.

Namely, the diagonal of Σ has the same or different elements. At the end of the minimization w.r.t Σ, we

arrive at the bound that requires to minimize θ to actually minimize the RHS. Our proof follows below.

Extra Notations. Throughout the proof we will use N for the total number of weights, i.e. the cardinality

of θ. When indexing a particular weight, we write θn. Let the diagonal of Σ be σ2 = [σ2
1 , σ2

2 , · · · , σ2
N ]
⊤, i.e.

the variance of each weight. We use Diag(a) to denote the diagonal matrix where the the diagonal is the

elements from vector a.

Step I: the KL term kl(Q||P). The expression of the KL term kl(Q||P) when P = N (0, σ2
0 I) is as follows,

kl(Q||P) = 1
2

[
log

σ2
0

det(Σ)
− N +

||θ||22
σ2

0
+

Tr(Σ)
σ2

0

]

=
1
2

[
∑
n

log
σ2

0
σ2

n
− N +

||θ||22
σ2

0
+

∑n σ2
n

σ2
0

]
(when Σ is a diagonal matrix). (D.1)

Step II: Second-order Taylor’s Expansion for Eθ∈QR̂(θ, Dn). We expand Eθ∈QR̂(θ, Dn) at the point θ and

use the re-parameterization trick,

Eθ∈QR̂(θ, Dn) = R̂(θ, Dn) + Eϵ∼N (0,Σ)[ϵ
⊤▽R̂]︸ ︷︷ ︸

=0 because ϵ has zero mean

+
1
2

Eϵ∼N (0,Σ)[ϵ
⊤▽2R̂ϵ]

+
1
6

Eϵ∼N (0,Σ)[∑
i,j,k

∂3R̂
∂θiθjθk

ϵiϵjϵk]︸ ︷︷ ︸
=0 because the mean and the skewness of a standard Gaussian are 0

+O(σ4)

= R̂(θ, Dn) +
1
2

Eϵ∼N (0,I)[(σ ◦ ϵ)⊤▽2R̂(σ ◦ ϵ)] + O(σ4) (D.2)

where ◦ is the element-wise product, a.k.a the Hadamard product. Notice the connection between a vector

product and Hadamard product:

for any vectors a, b, a ◦ b = Diag(a)b. (D.3)
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Using Eq. D.3, we simplify Eq. D.2 as follows,

Eθ∈QR̂(θ, Dn) = R̂(θ, Dn) +
1
2

Eϵ∼N (0,I)[(Diag(σ)ϵ)⊤▽2R̂(Diag(σ)ϵ)] + O(σ4)

= R̂(θ, Dn) +
1
2

Tr(Σ ◦▽2R̂) + O(σ4). (D.4)

Step III: Bound Minimization. Using Eq. D.1 and D.4, we re-write the bound in Theorem 3 as follows

Eθ∈QR̂(θ, Dn) ≤ Eθ∈QR̂(θ, Dn) +
1
β

kl(Q||P) + C(τ, β, m)

= R̂(θ, Dn) +
1
2

Tr(Σ ◦▽2R̂) +
1

2β

[
∑
n

log
σ2

0
σ2

n
− N +

||θ||22
σ2

0
+

∑n σ2
n

σ2
0

]
+ O(σ4) + C(τ, β, m).

(D.5)

There are two sets of parameters in Eq. D.5 for bound minimization: Σ (i.e. the σ2) and θ. To minimize w.r.t

Σ, strictly speaking it requires minimizing all relevant terms and the higher-order terms in O(σ4), which is

clearly infeasible. Instead, we apply the following approximation by neglecting the higher-order O(σ4) and

solve

σ∗2 = arg min
σ2

{
R̂(θ, Dn) +

1
2

Tr(Σ ◦▽2R̂) +
1

2β

[
∑
n

log
σ2

0
σ2

n
− N +

||θ||22
σ2

0
+

∑n σ2
n

σ2
0

] }
.

In the following, we discuss two cases of σ2
n .

Case I (Spherical Gaussian): ∀n, σ2
n = σ2

q . In this case, the solution to the problem above is to take the

derivative w.r.t. σ2
q and set it to zero. That is, for the optimal σ∗2q ,

Tr(R̂(θ, Dn)) +
K
β
(

1
σ2

0
− 1

σ∗2q
) = 0 =⇒

σ2
0

σ∗2q
= 1 +

σ2
0 β

K
Tr(R̂(θ, Dn)).

Substituting each σ2
n with σ∗2q in Eq. D.5 gives the solution to the following problem

min
σ2

[
Eθ∈QR̂(θ, Dn) +

1
β

kl(Q||P)
]
= R̂(θ, Dn) +

K
2β

log(1 +
σ2

0 β

K
Tr(R̂(θ, Dn))) +

||θ||22
2βσ2

0
+ O(σ∗4q ).

With the Taylor expansion for log(1 + x) = x + O(x2),

K
2β

log(1 +
σ2

0 β

K
Tr(R̂(θ, Dn)) =

σ2
0

2β
Tr(R̂(θ, Dn)) + O(σ4

0 ) + O(σ∗4q ).

We can actually merge O(σ4
0 ) + O(σ∗4q ) because

σ2
0

σ2∗
q

= 1 +
σ2

0 β

K
Tr(R̂(θ, Dn)) =⇒ σ2

0 ≥ σ∗2q

so O(σ4
0 ) + O(σ∗4q ) = O(σ4

0 ). Lastly, to minimize the bound, we optimize it w.r.t θ, which leads us to land

on:

min
θ
{R̂(θ, Dn) +

||θ||22
2βσ2

0
+

σ2
0

2
Tr(▽2

θ R̂(θ, Dn))}+ C(τ, β, m) + O(σ4
0 ).
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Case II (Diagonal): ∃n1, n2, σ2
n1
̸= σ2

n2
. In this case, we take the derivative w.r.t each σ2

n and set it to zero.

That is, for each optimal σ2∗
n ,

∂R̂2

∂θ2
n
+

1
β
(

1
σ2

0
− 1

σ2∗
n

) = 0 =⇒
σ2

0
σ2∗

n
= 1 + σ2

0 β
∂2R̂
∂θ2

n
.

Substituting σ2
n with σ2∗

n in Eq. D.5 gives the solution to the following problem

min
σ2

n

[
Eθ∈QR̂(θ, Dn) +

1
β

kl(Q||P)
]
= R̂(θ, Dn) +

1
2β ∑

n
log(1 + σ2

0 β
∂R̂2

∂θ2
n
) +
||θ||22
2βσ2

0
+ O(σ∗4).

Similar to Case I, we take Taylor’s Expansion of log(1 + x) so

1
2β ∑

n
log(1 + σ2

0 β
∂R̂2

∂θ2
n
) =

σ2
0

2
Tr(R̂(θ, Dn)) + O(σ4

0 ).

Lastly, using O(σ4
0 ) + O(σ∗4) = O(σ4

0 ), we land on the same objective as derived in Case I:

min
θ
{R̂(θ, Dn) +

||θ||22
2βσ2

0
+

σ2
0

2
Tr(▽2

θ R̂(θ, Dn))}+ C(τ, β, m) + O(σ4
0 ).

D.1.2 Proof of Theorem 5

Theorem 5 Suppose that f is a feed-forward network with ReLU activation. For the i-th layer, let W(i) be

its weight and I (i)x ∈ RD(i)
be its input evaluated at x. Thus, TrHCE

x (W(i−1)), i.e. TrH evaluated at x using a

CE loss w.r.t W(i−1), is as follows

TrHCE
x (W(i−1)) = ||{I (i−1)

x }||22 ∑
k,d∈P(i)

{H(i)}k,d

where {H(i)}k,di
=

[
∂{ f (x; θ)}k

∂{I (i)x }di

]2

· hk(x, θ)

P(i) = {di|{I
(i)
x }di

> 0}

and the following inequality holds for any H(i),H(i+1):

max
k,di
{H(i)}k,di

≤ max
k,di+1

H(i+1) · ||W(i)||21.

Proof. We use di−1, di and di+1 to index the element of I (i−1)
x , I (i)x and I (i+1)

x . For simplicity, we write

softmax(·) as s(·). By the definition of trace, we need to compute the second-order derivative of the CE

loss w.r.t to each entry in W(i). That is, we write

TrHCE
x (W(i−1)) = ∑

di−1,di

∂2

∂W(i−1)2
di−1,di

(CE((x, y), θ)). (D.6)
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First, we derive the first-order derivative. The following steps are based on the chain rule:

∂

∂W(i−1)
di−1,di

(CE((x, y), θ)) = ∑
k

∂

∂{ f (x; θ)}k
(CE((x, y), θ)) · { f (x; θ)}k

∂W(i−1)
di−1,di

= ∑
k
({s( f (x; θ)}k − yk) ·

{ f (x; θ)}k

∂W(i−1)
di−1,di

.

The second-order derivative is therefore equal to

∂2

∂W(i−1)2
di−1,di

(CE((x, y), θ)) = ∑
k

( ∂

∂W(i−1)
di−1,di

[{s( f (x; θ)}k − yk)] ·
{ f (x; θ)}k

∂W(i−1)
di−1,di

+ hk(x, θ) · ∂

∂W(i−1)
di−1,di

{ f (x; θ)}k

∂W(i−1)
di−1,di

 )

= ∑
k

(
hk(x, θ) ·

{ f (x; θ)}k

∂W(i−1)
di−1,di

2

+ hk(x, θ) · ∂

∂W(i−1)
di−1,di

{ f (x; θ)}k

∂W(i−1)
di−1,di

 ).

Notice that the first-order derivative of ReLU is either 1 or 0, so we have plenty of identity functions in
∂{ f (x;θ)}k

∂W(i−1)
di−1,di

. For example, for any layer j > i− 1, we can decompose this term as

∂{ f (x; θ)}k

∂W(i−1)
di−1,di

= ∑
dj+1

∂{ f (x; θ)}k

∂{I (j+1)
x }dj+1

·∑
dj

∂{I (j+1)
x }dj+1

∂{I (j)
x }dj

·
∂{I (j)

x }dj

∂W(i−1)
di−1,di

= ∑
dj+1

{∂ f (x; θ)}k

∂{I (j+1)
x }dj+1

·∑
dj

I[{I (j+1)
x }dj+1

> 0] ·W(j)
dj ,dj+1

·
∂{I (j)

x }dj

∂W(i−1)
di−1,di

.

Taking derivatives of I[{I (j+1)
x }dj+1

> 0] w.r.t W(i−1)
di−1,di

results in nothing but 0, so we conclude that

∂

∂W(i−1)
di−1,di

{ f (x; θ)}k

∂W(i−1)
di−1,di

 = 0. (D.7)

Eq. D.7 simplifies the expression of the second-order derivative w.r.t W(i−1)
di−1,di

so we have the following clean

expression:

∂2

∂W(i−1)2
di−1,di

(CE((x, y), θ)) = ∑
k

∂{ f (x; θ)}k

∂W(i−1)
di−1,di

2

· hk(x, θ)

= ∑
k

∂{ f (x; θ)}k

∂{I (i)x }di

·
∂{I (i)x }di

∂W(i−1)
di−1,di

2

· hk(x, θ)

= ∑
k

[
∂{ f (x; θ)}k

∂{I (i)x }di

· I[{I (i)x }di
> 0] · {I (i−1)

x }di−1

]2

· hk(x, θ)

= I[{I (i)x }di
> 0] · {I (i−1)

x }2
di−1
·∑

k

[
∂{ f (x; θ)}k

∂{I (i)x }di

]2

· hk(x, θ). (D.8)
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By defining {H(i)}k,di
=

[
∂{ f (x;θ)}k

∂{I (i)x }di

]2

· hk(x, θ), we further simplify Eq. D.8 as follows

∂2

∂W(i−1)2
di−1,di

(CE((x, y), θ)) = I[{I (i)x }di
> 0] · {I (i−1)

x }2
di−1
·∑

k
{H(i)}k,di

. (D.9)

We plug Eq. D.9 back to Eq. D.6 and arrive

TrHCE
x (W(i−1)) = ∑

di−1,di

I[{I (i)x }di
> 0] · {I (i)x }2

di−1
·∑

k
{H(i)}k,di

=
(

∑
di−1

{I (i−1)
x }2

di−1

)
·∑

k,di

I[{I (i)x }di
> 0] · {H(i)}k,di

= ||{I (i−1)
x }||22 ·∑

k,di

I[{I (i)x }di
> 0] · {H(i)}k,di

.

By defining P(i) as a set of indices of positive neurons in I (i)x , i.e, ∀d2 ∈ P(i), {I (i)x }d2 > 0, we simplify the

equation above as follows

TrHCE
x (W(i−1)) = ||{I (i)x }||22 · ∑

k,di∈P(i)

{H(i)}k,di
.

Furthermore, by the definition of H(i), we notice that

{H(i)}k,di
=

[
∂{ f (x; θ)}k

∂{I (i)x }di

]2

· hk(x, θ)

=

{
∑
di+1

 ∂{ f (x; θ)}k

∂{I (i+1)
x }di+1

·
∂{I (i+1)

x }di+1

∂{I (i)x }di

}2

· hk(x, θ) (D.10)

=

{
∑
di+1

({H(i+1)}k,di+1

hk(x, θ)

) 1
2 ·

∂{I (i+1)
x }di+1

∂{I (i)x }di

}2

· hk(x, θ). (D.11)

Notice that the transition from Eq. D.10 to Eq. D.11 is because ∀k, hk(x, θ) > 0. Thus, we find

{H(i)}k,di
=

{
∑
di+1

{H(i+1)}
1
2
k,di+1

·
∂{I (i+1)

x }di+1

∂{I (i)x }di

}2

. (D.12)

For each layer i, we denote H(i)
max = maxk,di

{H(i)}k,di
. Since ∀i, di, {H(i)}k,di

> 0, we can take the square

root for H(i)
max such that

∀k, di, (H
(i)
max)

1
2 ≥ ({H(i)}k,di

)
1
2 .
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Thus, we can bound {H(i)}k,di
as follows:

{H(i)}k,di
≤
{

∑
di+1

(H(i+1)
max )

1
2 ·

∂{I (i+1)
x }di+1

∂{I (i)x }di

}2

= H(i)
max

∑
di+1

∂{I (i+1)
x }di+1

∂{I (i)x }di

2

.

The squared term can be further bounded by using the chain rule, namely,

{H(i)}k,di
≤ H(i+1)

max

∑
di+1

I[{I (i+1)
x }di+1

> 0] ·W(i)
di ,di+1

2

≤ H(i+1)
max

∑
di+1

|W(i)
di ,di+1

|

2

.

Recall that our goal is to bound H(i)
max. By definition, we take the max on both sides over di and k (although

the class dimension is already gone). The direction of the inequality still holds because quantities on both

sides are all non-negative.

H(i)
max ≤ H

(i+1)
max max

di

∑
di+1

|W(i)
di ,di+1

|

2

.

The order of max and square can be exchanged because |W(i)
di ,di+1

| is non-negative. Thus,

H(i)
max ≤ H

(i+1)
max

max
di

∑
di+1

|W(i)
di ,di+1

|

2

.

The last term inside the square is the definition of the ℓ1 operator norm so we directly write

H(i)
max ≤ H

(i+1)
max · ||W(i)||21.

D.1.3 Derivations of Propositions

Proposition 2 Given a training dataset Dn and the adversarial input example x′ for each example x, the

top-layer TrH of the AT loss (Definition 14) is equal to

Tr(▽2
θt

R̂AT(θ, Dn)) =
1
n ∑

(x,y)∈Dn
TrHAT(x′; θ),

where TrHAT(x′; θ) = || f (x′; θb)||22 · 1⊤h(x′, θ).

Proof. For simplicity, we write softmax(·) as s(·). We firstly write the expression of R̂AT(θ, Dn) based on

Definition 14,

R̂AT(θ, Dn) =
1
n ∑

(x,y)∈Dn
max
||δ||p≤ϵ

CE((x + ϵ, y), θ).
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Let x′ be an adversarial example, namely

x′ = arg max
||δ||p≤ϵ

[CE((x + δ, y), θ)] + x.

AT loss can be simplified as

R̂AT(θ, Dn) =
1
n ∑

(x,y)∈Dn
CE((x′, y), θ) =

1
n ∑

(x,y)∈Dn
∑
k
−yk log s( f ′k),

where f ′k = {θ
⊤
t f (x′; θb)}k is the logit score of class k at the adversarial example x′ and s(·) is the softmax

function. Let’s consider the loss at each adversarial point

R = ∑
k
−yk log s( f ′k).

We want to compute the derivatives of R with respect to the weight at the top layer {θt}jk. For the ease of

the notation, let’s define w = θt so wjk = {θt}jk and ▽wjk R is equal to

▽wjk R = ∑
k
−yk▽wjk [log s( f ′k)] = { f (x′; θb)}j(s( f ′k)− yk). (D.13)

The transition to Eq. D.13 uses the standard form of the gradient of Cross Entropy loss with the softmax

activation. To compute the trace of a Hessian, we can skip the cross terms in Hessian (e.g. ▽wj1k ,wj2k R)

because they are not on the diagonal of the matrix. Thus, we are only interested in ▽2
wjk

R, which are

▽2
wjk

R = ▽wjk

[
▽wjk R

]
= ▽wjk

[
x′j(s( f ′k)− yk)

]
= { f (x′; θb)}j · { f (x′; θb)}j · s( f ′k)(1− s( f ′k))

= { f (x′; θb)}2
j (s( f ′k)− s2( f ′k)).

Eventually, to compute the trace of Hessian matrix we sum all diagonal terms so that

Tr(▽2
wjk

R) = ∑
j,k

▽2
wjk

R = ∑
j,k
{ f (x′; θb)}2

j (s( f ′k)− s2( f ′k)) = || f (x′; θb)||22 · 1⊤h(x′, θ)

and we denote Tr(▽2
wjk

R) as TrHAT(x′; θ) to complete the proof.

Proposition 3 Under the same assumption as in Proposition 2, the top-layer TrH of the TRADES loss (Def’

15) is equal to

Tr(▽2
θt

R̂T(θ, Dn)) =
1
n ∑

(x,y)∈Dn
TrHT(x, x′; λt, θ),

where, TrHT(x, x′; λt, θ) = || f (x; θb)||22 · 1⊤h(x, θ) + λt|| f (x′; θb)||22 · 1⊤h(x′, θ).

Before we start our proof of this proposition, we introduce the following useful lemmas.
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Lemma 1 Let s(g) be the softmax output of the logit output g computed at input x, then

∂s(g)
∂g

= Φ = diag[s(g)]− s(g) · {s(g)}⊤ (D.14)

where diag(v) returns an identity matrix with its diagonal replaced by a vector v.

Proof.

∂s(gi)

∂ fk
= s(gi)(I [i = k]− s( fk)), Φik = s(gi) · I [i = k]− s(gi)s( fk) =⇒ ∂s(g)

∂g
= Φ.

Lemma 2 Let log s(g(x)) be the log softmax output of the logit output g computed at input x, then

∂ log s(g(x))
∂g(x)

= Ψ = I − 1 · {s(g(x))}⊤

where I is the identity matrix.

Proof.

∂ log s(gi)

∂ fk
= I [i = k]− s( fk), Ψik = I [i = k]− s( fk) =⇒ ∂s(g)

∂g
= Ψ.

Now we are ready to present our proof of the Proposition 3.

Proof. We write the expression of R̂T(θ, Dn) based on as Definition 15.

R̂T(θ, Dn) =
1
n ∑

(x,y)∈Dn

[
CE((x, y), θ) + λt · max

||δ||p≤ϵ
KL((x, x + ϵ), θ)

]
,

where KL((x, x + ϵ), θ) = kl(s( f (x; θ))||s(θ(x + ϵ)). Thus, we can compute the trace of Hessian on

the top layer for the CE loss and the KL loss, respectively. Namely, we derive ▽2
θt
[CE((x, y), θ)] and

▽2[max||δ||p≤ϵ KL((x, x + ϵ), θ)].

First, we see that the expression of ▽2
θt
[CE((x, y), θ)] is similar to the result in Proposition 2 by replacing

the adversarial input with the clean input. With this similarity, we directly write

Tr{▽2
θt
[CE((x, y), θ)]} = || f (x; θb)||22 · 1⊤h(x, θ). (D.15)

Second, by denoting

x′ = arg max
||δ||p≤ϵ

[KL((x, x + ϵ), θ)] + x,

the rest of the proof now focuses on deriving ▽2
θt
[KL((x, x′), θ)] where

KL((x, x′), θ) = −∑
i

s(gi) log(s(g′i)) +

[
∑

i
s(gi) log(s(gi))

]
, gi = {θ⊤t f (x; θb)}i, g′i = {θ⊤t f (x′; θb)}i.
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For the ease of the notation, let w = θt so wjk = {θt}jk and let K = KL((x, x′), θ). To find ▽2
θt

K, we first

write the first-order derivative of K with respect to w,

∂K
∂wjk

= −∑
i

s(gi)
∂

∂ f ′k

[
log(s(g′i))

] ∂ f ′k
∂∂wjk

+ ∑
i

∂K
∂s(gi)

∂s(gi)

∂ fk

∂ fk
∂∂wjk︸ ︷︷ ︸

gradient through fk

. (D.16)

Next, we discuss two cases depending on whether or not we stop gradient on g (the logit output of the

clean input) in Eq. D.16. In Case I where the gradient on g is stopped, the second term of Eq. D.16 will

vanish. This leads to a simpler but practically more stable objective function.

Case I: Stop Gradient on g. In this case,

∂K
∂wjk

= −∑
i

s(gi)
∂

∂ f ′k

[
log(s(g′i))

] ∂ f ′k
∂∂wjk

= { f (x′; θb)}j(s( f ′k)− s( fk)). (D.17)

By comparing Eq. D.17 with Eq. D.13 and treating s( fk) as constants, we can quickly write out the

second-order derivative as

∂2K
∂w2

jk
= { f (x′; θb)}2

j (s( f ′k)− s2( f ′k)).

Recalling h(x′, θ) = s(g′)− s2(g′), therefore,

Tr{▽2
θt
[KL((x, x′), θ)]} = Tr{▽2

θt
K} = ∑

jk

∂2K
∂w2

jk
= || f (x′; θb)||22 · 1⊤h(x′, θ). (D.18)

Finally, we combine Eq. D.15 and D.18 to arrive at

Tr
{
▽2

θt

[
CE((x, y), θ) + λt · max

||δ||p≤ϵ
KL((x, x + ϵ), θ)

]}
= || f (x; θb)||22 · 1⊤h(x, θ) + λt|| f (x′; θb)||22 · 1⊤h(x′, θ),

where x′ = arg max
||δ||p≤ϵ

[KL((x, x + ϵ), θ)] + x

By denoting TrHt(x, x′; λt, θ) = Tr
{
▽2

θt

[
CE((x, y), θ) + λt ·max||δ||p≤ϵ KL((x, x + ϵ), θ)

]}
, we complete the

proof for this case and this is the statement shown in Proposition 3.

Case II: With Gradient on g. We restart our derivation from Eq. D.16 and expand the first term as follows

∂K
∂wjk

= { f (x′; θb)}j(s( f ′k)− s( fk)) + ∑
i

∂K
∂s(gi)

∂s(gi)

∂ fk

∂ fk
∂∂wjk

.

Here

∑
i

∂K
∂s(gi)

∂s(gi)

∂ fk

∂ fk
∂∂wjk

= −{ f (x; θb)}j ∑
i

∂s(gi)

∂ fk
log s(g′i) + { f (x; θb)}j ∑

i

[
∂s(gi)

∂ fk
log s(gi) + s(gi)

∂ log s(gi)

∂ fk

]
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Using Lemma 1 and 2, we write

∂s(gi)

∂ fk
= Φik,

∂ log s(gi)

∂ fk
= Ψik, Φik = s(gi)Ψik

and

∑
i

∂K
∂s(gi)

∂s(gi)

∂ fk

∂ fk
∂∂wjk

= −{ f (x; θb)}j ∑
i

Φik log s(g′i) + { f (x; θb)}j ∑
i
[Φik log s(gi) + Φik] .

Therefore, the first-order derivative of K with respect to wjk is

∂K
∂wjk

= { f (x′; θb)}j(s( f ′k)− s( fk))− { f (x; θb)}j ∑
i

Φik log s(g′i) + { f (x; θb)}j ∑
i
[Φik log s(gi) + Φik]

= { f (x′; θb)}js( f ′k)︸ ︷︷ ︸
K′

−{ f (x′; θb)}js( fk)︸ ︷︷ ︸
K1

−{ f (x; θb)}j ∑
i

Φik log s(g′i)︸ ︷︷ ︸
K2

+ { f (x; θb)}j ∑
i
[Φik log s(gi) + Φik]︸ ︷︷ ︸

K3

.

To calculate the seconder-order derivative of K w.r.t wjk, we find the derivative of K′, K1, K2, K3 w.r.t wjk,

respectively.

(1) Derivative of K′. K′ is simply the result we have already obtained in Case I (see Eq. D.17); therefore,

∂K′

∂wjk
= { f (x′; θb)}2

j (s( f ′k)− s2( f ′k)).

Thus,

Tr(
∂K′

∂wjk
) = || f (x′; θb)||22 · 1⊤h(x′, θ).

(2) Derivative of K1.

∂K1

∂wjk
= −{ f (x′; θb)}j{ f (x; θb)}j

∂s( fk)

∂ fk

= −{ f (x′; θb)}j{ f (x; θb)}jΦkk

= −{ f (x′; θb)}j{ f (x; θb)}j(s( fk)− s2( fk)).

Thus,

Tr(
∂K1

∂wjk
) = −∑

jk
{ f (x′; θb)}j{ f (x; θb)}j(s( fk)− s2( fk))

= − f (x′; θb)
⊤ f (x; θb) · 1⊤h(x, θ)

(3) Derivative of K2.

∂K2

∂wjk
= −{ f (x; θb)}j ∑

i

[
∂Φik
∂ fk

∂ fk
∂wjk

log s(g′i) + Φik
∂ log s(g′i)

∂ f ′k

∂ f ′k
∂wjk

]

= −{ f (x; θb)}j ∑
i

[
∂Φik
∂ fk
{ f (x; θb)}j log s(g′i) + ΦikΨ′ik{ f (x′; θb)}j

]
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Notice that

i = k =⇒ ∂Φik
∂ fk

=
∂Φkk
∂ fk

=
∂

∂ fk
(s( fk)− s2( fk)) = Φkk − 2s( fk)Φkk;

and i ̸= k =⇒ ∂Φik
∂ fk

=
∂

∂ fk
(−s(gi)s( fk)) = −2s(gi)Φkk.

Thus,

∂Φik
∂ fk

= Φkk(I[k = i]− s(gi)) = Φkk{Ψ⊤}ik = ΦkkΨki.

As a result,

∂K2

∂wjk
= −{ f (x; θb)}j ∑

i

[
ΦkkΨki{ f (x; θb)}j log s(g′i) + ΦikΨ′ik{ f (x′; θb)}j

]
= −{ f (x; θb)}2

j Φkk ∑
i

Ψki log s(g′i)− { f (x; θb)}j{ f (x′; θb)}j ∑
i

ΦikΨ′ik

= (−{ f (x; θb)}2
j Φkk)(Ψk · log s(g′))− { f (x; θb)}j{ f (x′; θb)}j({Φ⊤}k · {Ψ′⊤}k).

Thus,

Tr(
∂K2

∂wjk
) = ∑

jk

[
(−{ f (x; θb)}2

j Φkk)(Ψk · log s(g′))− { f (x; θb)}j{ f (x′; θb)}j({Φ⊤}k · {Ψ′⊤}k)
]

= −|| f (x; θb)||22 · ψ
′⊤h(x, θ)− f⊤θb

(x′) f (x; θb) · 1⊤ω′,

where ψ′, ω′ are vectors such that ψ′k = Ψk · log s(g′), ω′k = {Φ
⊤}k · {Ψ′⊤}k.

(4) Derivative of K3.

∂K3

∂wjk
= { f (x; θb)}j ∑

i

[
∂Φik
∂ fk

∂ fk
∂wjk

log s(gi) + Φik
∂ log s(gi)

∂ fk

∂ fk
∂wjk

+
∂Φik
∂ fk

∂ fk
∂wjk

]

= { f (x; θb)}2
j ∑

i
[ΦkkΨki log s(gi) + ΦikΨik + ΦkkΨki]

= { f (x; θb)}2
j

Φkk(Ψk · log s(g)) + ({Φ⊤}k · {Ψ⊤}k) + Φkk( Ψk · 1)︸ ︷︷ ︸
row sum is 0


= { f (x; θb)}2

j

[
Φkk(Ψk · log s(g)) + ({Φ⊤}k · {Ψ⊤}k)

]
.

Thus,

Tr(
∂K3

∂wjk
) = ∑

jk

[
{ f (x; θb)}2

j

[
Φkk(Ψk · log s(g)) + ({Φ⊤}k · {Ψ⊤}k)

]]
= || f (x; θb)||22 · (ψ⊤h(x, θ) + 1⊤ω).
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Finally, we have

Tr(
∂2K
∂w2

jk
) = Tr

[
∂K′

∂wjk
+

∂K1

∂wjk
+

∂K2

∂wjk
+

∂K3

∂wjk

]

= || f (x′; θb)||22 · 1⊤h(x′, θ) + G(x, x′; θ)

where

G(x, x′; θ) = − f (x′; θb)
⊤ f (x; θb) · 1⊤h(x, θ)− f (x′; θb)

⊤ f (x; θb) · 1⊤h(x, θ)− || f (x; θb)||22 · ψ
′⊤h(x, θ)

− f⊤θb
(x′) f (x; θb) · 1⊤ω′ + || f (x; θb)||22 · (ψ⊤h(x, θ) + 1⊤ω).

We arrive at

Tr
{
▽2

θt

[
CE((x, y), θ) + λt · max

||δ||p≤ϵ
KL((x, x + ϵ), θ)

]}
(D.19)

= || f (x; θb)||22 · 1⊤h(x, θ) + λt(|| f (x′; θb)||22 · 1⊤h(x′, θ) + G(x, x′; θ)),

where

x′ = arg max
||δ||p≤ϵ

[KL((x, x + ϵ), θ)] + x

Finally, we complete the derivation by denoting TrHt(x, x′; λt, θ) = Tr
{
▽2

θt

[
CE((x, y), θ)+λt ·max||δ||p≤ϵ KL((x, x+

ϵ), θ)
]}

.

D.1.4 TrH Regularization for Other Adversarial Losses

In this section, we apply TrH regularization to some additional robust losses other than AT or TRADES.

Similarly, we use s for for simplicity.

ALP (Kannan et al., 2018). Similar to TRADES, Adversarial Logit Pairing (ALP) (Kannan et al., 2018) is

another method that pushes points away from the decision boundary by regularizing the ℓ2 difference

between the clean and the adversarial softmax outputs. Formally, ALP minimizes the following loss during

training,

R̂A(θ, Dn) =
1
n ∑

(x,y)∈Dn
CE((x′, y), θ) + λA||s( f (x; θ))− s( f (x′; θ))||22

where x′ = x + arg max
||δ||p≤ϵ

CE((x + ϵ, y), θ).

We hereby derive TrH regularization for R̂A(θ, Dn). Using Proposition 2, we know that

TrH(CE((x′, y), θ)) = || f (x′; θb)||22 · 1⊤h(x′, θ).
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The rest of this section will focus on the ℓ2 distance loss,

S = ||s( f (x; θ))− s( f (x′; θ))||22 = ∑
i
(s(gi)− s(g′i))

2, (D.20)

where g = f (x; θ), g′ = f (x′; θ). To compute Tr(▽2
θt

S), we need to re-use Lemma 1 and 2 to obtain the

derivatives of the softmax and log-softmax outputs, i.e.

∂s( f (x; θ))

f (x; θ)
= Φ = Diag(s( f (x; θ)))− s( f (x; θ)) · s( f (x; θ))⊤

and
∂ log s( f (x; θ))

f (x; θ)
= Ψ = I − 1 · s( f (x; θ))⊤,

as well as

∂Φik
∂{gθ(x)}k

= ΦkkΨki.

For the ease of notation, we let w = θt be the weights of the top-layer. Now we are ready to write the

first-order derivative of S w.r.t wjk as follows

∂S
∂wjk

= ∑
i

2(s(gi)− s(g′i))

[
∂s(gi)

∂wjk
−

∂s(g′i)
∂wjk

]

= 2 ∑
i
(s(gi)− s(g′i))(Φik{ f (x; θb)}j −Φ′ik{ f (x′; θb)}j).

The second-order derivative is equal to

∂2S
∂w2

jk
= 2 ∑

i

[
∂s(gi)

∂wjk
−

∂s(g′i)
∂wjk

]
(Φik{ f (x; θb)}j −Φ′ik{ f (x′; θb)}j) (D.21)

+ (s(gi)− s(g′i))

[
∂Φik
∂wjk
{ f (x; θb)}j −

∂Φ′ik
∂wjk
{ f (x′; θb)}j

]

= 2 ∑
i
(Φik{ f (x; θb)}j −Φ′ik{ f (x′; θb)}j)

2

+ (s(gi)− s(g′i))(ΦkkΨki{ f (x; θb)}2
j −Φ′kkΨ′ki{ f (x′; θb)}2

j ). (D.22)

Similar to TRADES, if one stops gradients over the clean logit g, then Eq. D.22 can be simplified as,

∂2S
∂w2

jk
= 2 ∑

i
(Φ′ik{ f (x′; θb)}j)

2 + (s(gi)− s(g′i))(−Φ′kkΨ′ki{ f (x′; θb)}2
j )

= 2{ f (x′; θb)}2
j

(
||Φk||22 −Φ′kk((s(g)− s(g′))⊤Ψ′k)

)
.

Therefore, the trace of Hessian is equal to,

Tr(▽2
θt

S) = ∑
jk

2{ f (x′; θb)}2
j

(
||Φk||22 −Φ′kk((s(g)− s(g′))⊤Ψ′k)

= 2|| f (x′; θb)||22 ·∑
k

(
||Φk||22 −Φ′kk((s(g)− s(g′))⊤Ψ′k)

)
.
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If the gradient over g is kept, then one can sum over the feature dimension j and the class dimension k in

Eq. D.22. To put together, the TrH regularization term for ALP is given as follows:

1
n ∑

(x,y)∈Dn
|| f (x′; θb)||22 · 1⊤h(x′, θ) + λA · Tr(▽2

θt
S).

MART (Wang et al., 2020b). In (Wang et al., 2020b), Wang et al. proposed MART as a robust training loss

that focus more on points that are not classified correctly. Different from AT, TRADES and ALP, MART

explicitly aims to increase the margin between the top prediction and the second best candidate. In what

follows we provide the TrH regularization for MART. We denote the MART loss as R̂M, which contains two

components: a boosted Cross-Entropy (BCE) loss and a weighted KL-Divergence (WKL),

R̂M(θ, Dn) =
1
n ∑

(x,y)∈Dn
BCE((x′, y), θ) + λm((x, x′), θ),

where

BCE((x′, y), θ) = CE((x, y), θ) + (− log(1−max
κ ̸=y

s({ f (x′; θ)}κ)),

and, ((x, x′), θ) = kl(s( f (x; θ))||s( f (x′; θ)))(1− s({ f (x; θ))}y).

Here

x′ = x + arg max
||δ||p≤ϵ

CE((x, y), θ). (D.23)

First, we derive TrH of the BCE loss with respect to the top-layer weights θt,

Tr(▽2
θt

BCE) = Tr(▽2
θt
[CE((x, y), θ)]) + Tr(▽2

θt
[− log(1−max

κ ̸=y
s({ f (x′; θ)}κ)]).

Using intermediate steps from the proof of Proposition 3 in Appendix D.1, we have that

Tr(▽2
θt
[CE((x, y), θ)]) = || f (x; θb)||22 · 1⊤h(x, θ).

In order to compute Tr(▽2
θt
[− log(1−maxκ ̸=y s({ f (x′; θ)}κ)]), we make use of Lemma 1 and 2 to obtain

the derivatives of the softmax and log-softmax outputs,

∂s( f (x′; θ))

∂ f (x′; θ)
= Φ′ = Diag(s( f (x′; θ)))− s( f (x′; θ)) · s( f (x′; θ))⊤

and
∂ log s( f (x′; θ))

∂ f (x′; θ)
= Ψ′ = I − 1 · s( f (x′; θ))⊤,

as well as,

∂Φ′ik
∂{gθ(x′)}k

= Φ′kkΨ′ki.
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Let us denote K = − log(1−maxκ ̸=y s({ f (x′; θ)}κ)] and w = θt for the ease of notation. Then the first-order

derivative of K w.r.t. wjk is,

∂K
∂wjk

=
Φ′κ∗k

1− s({ f (x′; θ)}κ∗)
{ f (x′; θb)}j,

where

κ∗ = arg max
κ ̸=y

s({ f (x′; θ)}κ).

The second-order derivative is,

∂2K
∂w2

jk
=

∂Φ′
κ∗k

∂wjk
(1− s({ f (x′; θ)}κ∗)) + Φ′κ∗kΦ′κ∗k{ f (x′; θb)}j

(1− s({ f (x′; θ)}κ∗))2 { f (x′; θb)}k

=
Φ′kkΨ′kκ∗{ f (x′; θb)}k(1− s({ f (x′; θ)}κ∗)) + Φ′κ∗kΦ′κ∗k{ f (x′; θb)}j

(1− s({ f (x′; θ)}κ∗))2 { f (x′; θb)}j

= { f (x′; θb)}2
j

[
Φ′κ∗kΦ′κ∗k

1− s({ f (x′; θ)}κ∗)
+

Φ
′2
κ∗k

(1− s({ f (x′; θ)}κ∗))2

]
.

Thus,

Tr(
∂2K
∂w2

jk
) = ∑

jk
{ f (x′; θb)}2

j

[
Φ′κ∗kΦ′κ∗k

1− s({ f (x′; θ)}κ∗)
+

Φ
′2
κ∗k

(1− s({ f (x′; θ)}κ∗))2

]

= || f (x′; θb)||22 ∑
k

[
Φ′κ∗kΦ′κ∗k

1− s({ f (x′; θ)}κ∗)
+

Φ
′2
κ∗k

(1− s({ f (x′; θ)}κ∗))2

]
,

and

Tr(▽2
θt

BCE) = || f (x; θb)||22 · 1⊤h(x, θ) + || f (x′; θb)||22 ∑
k

[
Φ′κ∗kΦ′κ∗k

1− s({ f (x′; θ)}κ∗)
+

Φ
′2
κ∗k

(1− s({ f (x′; θ)}κ∗))2

]
.

Next, we derive the trace of Hessian for WKL loss. Similarly to before, by stopping the gradient over

the clean logit f (x; θ), the trace of Hessian of WKL will be the same as the KL loss used in TRADES, which

has been shown in Proposition 3. Namely, in this case

Tr(▽2
θt
) = || f (x′; θb)||22 · 1⊤h(x′, θ).

On the other hand, if the gradient on f (x; θ) is computed, there is an additional term in Tr(▽2
θt
) (similar

but more complicated than G(x, x′; θ) derived in the proof of Proposition 3 in Appendix D.1), which we

will leave as future work. Finally, we present the TrH regularization for MART as follows,

TrHM(x, x′; λm, θ) = Tr(▽2
θt

BCE) + λmTr(▽2
θt
).

This concludes our derivations of the TrH regularization for the MART loss.
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Pre-Selected Hyper-parameters (CIFAR-10/100)

Parameter Reason To Select Used

img_size to be compatible with ϵ 32× 32
patch_size same as Mahmood et al. (2021) 4× 4
parameter_init publicly available ImageNet21K
batch_size memory 768
warm_up iterations standard 500

Pre-tuning Stage

Parameter Range Explanation Used

optimizer {‘sgd+momentum’, ‘adam’} optimizer sgd+momentum
base_lr {0.001, 0.01, 0.1} initial learning rate 0.1
l2_reg {0, 0.0001, 0.001} coefficient for L2 regularization 0
data_aug {‘fb’, ‘crop’} data augmentation method ‘fb’

‘fb’: flip and random brightness
‘crop’: randomly crop and upsample

downsample {‘cubic’, ‘nearest’, ‘bilinear’ } downsample method for the first kernel to cubic
fit the patch size from 16× 16 to 4× 4

patch_stride {2, 4} the stride to create image patches 2
data_range {[−1, 1], [0, 1], ‘centered’} data range centered

‘centered’: 0-mean and 1-std
use_cutmix {True, False} whether to use cutmix augmentation False

Table D.1: Frozen Hyper-parameters for CIFAR-10 and CIFAR-100 (including DDPM images) in All
Experiments.

Pre-Selected Hyper-parameters (ImageNet)

Parameter Reason To Select Used

data_range to align with ImageNet21K checkpoint [−1, 1]
img_size to be compatible with ϵ 224× 224
patch_size standard 16× 16
parameter_init publicly available ImageNet21K checkpoint
batch_size memory 64
warm_up iterations standard 500

Pre-tuning Stage

Parameter Range Explanation Final Frozen Value

optimizer {‘sgd+momentum’, ‘adam’} optimizer ‘sgd+momentum’
base_lr {0.001, 0.01, 0.1} initial learning rate 0.01
decay_type {‘multistep’, ‘cosine’} the function used to schedule lr decay cosine
l2_reg [0.0001, 0.001] coefficient for ℓ2 regularization 0.0001
data_aug {‘fb’, ‘crop’} data augmentation method ‘fb’

‘fb’: flip and random brightness
‘crop’: randomly crop and upsample

use_cutmix {True, False} whether to use cutmix augmentation False

Table D.2: Frozen Hyper-parameters for ViT-B16 and ViT-L16 to reproduce results in Table. 4.1.

D.2 Hyper-parameter Pre-Tuning

Pre-Tuning. Training ViTs can sometimes be challenging due to a large amount of hyper-parameters. For

the choice of the parameters that are shared across different defense methods, e.g. batch size, patch size,

training iterations, and etc., we do a large grid search and choose the parameter setting that produce the

best results on TRADES(base) and use it for all the methods. This step is referred to as pre-tuning and is
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done per-dataset.

Pre-selected Hyper-parameters. There is a set of hyper-parameters requiring no tuning because they are

commonly selected in the literature. In the top of Table D.2 and D.1, we write down the these parameters

and explain the reason for choosing a particular value.

Tunable Hyper-parameters. In the bottom of Table D.2 and D.1, we show our choice of hyper-parameters

for ImageNet and CIFAR-10/100, respectively. This includes

• optimizer. We tested a momentum-SGD (sgd+momentum) and an Adam optimizer (adam). We found

that momentum-SGD is more stable in fine-tuning the ViT from a pre-trained checkpoint.

• base_lr, warm_up_iterations and decay_type. We linearly increase the learning rate from 0 to

the base_lr during warm_up_iterations. After warm-up, we gradually schedule the learning

rate based on the decay_type. We experiment with a multi-step and a cosine decay and find no

apparent difference between these two schedulers. In the end, we choose cosine because it has less

hyper-parameters to choose compared to the multi-step one.

• l2_reg. On ImageNet, we find ℓ2 regularization with a penalty of 0.0001 helps the baseline

TRADES(base). On CIFAR-10/100, we find that ℓ2 regularization may not be necessary when

using DDPM data.

• cutmix. In both cases we do not find the cut mix augmentation (Yun et al., 2019) help to improve the

results.

• data_range. On CIFAR10/100, we find that centered data, i.e. normalizing the data to have 0 mean

and (close to) 1 standard deviation, provides better results than scaling the images to [-1, 1] (the range

of data used by the pre-trained checkpoint). We simply subtract the CIFAR images from the average

of per-channel mean (0.47) and divide it with the average of per-channel standard deviation (0.25).

For ImageNet, we still use [-1, 1] as the data range. Notice that ball needs to be re-scaled for both

data ranges describe above. For example, when reporting results on ϵ = 0.031 and using centered

data, we need to use ϵ/0.25 as the actual noise bound passed to the attacker. When normalizing the

data to [−1, 1], we need to pass ϵ/0.5 to the attacker.

• patch_size. The size of the image patch of the input sequence to ViT. 16× 16 is the standard size

of pre-trained ViT models on ImageNet21K. Thus, when fine-tuning on ImageNet, we use 16× 16.

CIFAR images are a lot smaller compared to ImageNet images. As a result, we use a smaller patch
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Fine-tuning Hyper-parameters (CIFAR-10/100, ViT-L16)

Defense Hyper-parameter Range Final Choice Final Choice
(CIFAR-10) (CIFAR-100)

AT(AWP) δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
AT(SWA) α - 0.995 0.995
AT(S2O) α - 0.1 0.1
AT(TrH) λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.00001 0.01

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
γ - 0.001 0.001

TRADES(AWP), λt=6 δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0001
TRADES(SWA), λt=6 α - 0.995 0.995
TRADES(S2O), λt=6 α - 0.3 0.3
TRADES(TrH), λt=6 λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘constant’
γ - 0.001 0.001

Fine-tuning Hyper-parameters (CIFAR-10/100, Hybrid-L16)

Defense Hyper-parameter Range Final Choice Final Choice
(CIFAR-10) (CIFAR-100)

AT(AWP) δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
AT(SWA) α - 0.995 0.995
AT(S2O) α - 0.1 0.1
AT(TrH) λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
γ - 0.001 0.001

TRADES(AWP), λt=6 δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
TRADES(SWA), λt=6 α - 0.995 0.995
TRADES(S2O), λt=6 α - 0.3 0.3
TRADES(TrH), λt=6 λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
γ - 0.001 0.001

Table D.3: Hyper-parameters used in each defense and the values used to reproduce CIFAR10/100 results
in Table. 4.1.

size of 4× 4 to produce more patches. Using a smaller patch size requires some modifications to ViT

architecture and we discuss this in detail in Appendix D.5.

• downsample and patch_stride. These are particular to CIFAR images. Please refer to Appendix D.5

for detail.

D.3 Hyper-parameters for Specific Methods

We fine-tune ViTs after common hyper-parameters are locked after pre-tuning. For all methods, we take

10 PGD steps on CIFAR-10/100 and 7 steps for ImageNet during the training. We report the best results

for each method after trying different sets of hyper-parameters. This usually involves method-specific

parameters. We elaborate what hyper-paramter is tuned as follows and report the final values used in the

experiments in Table D.3 (CIFAR-10/100) and D.4 (ImageNet).
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Fine-tuning Hyper-parameters (ImageNet, ViT-B16)

Defense Hyper-parameter Range For ℓ∞ For ℓ2

AT(AWP) δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
AT(SWA) α - 0.995 0.995
AT(S2O) α - 0.1 0.1
AT(TrH) λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.00005

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘linear’
γ - 0.0001 0.0001

TRADES(AWP), λt=6 δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
TRADES(SWA), λt=6 α - 0.995 0.995
TRADES(S2O), λt=6 α - 0.3 0.3
TRADES(TrH), λt=6 λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.00005 0.00005

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘linear’ ‘linear’
γ - 0.0001 0.0001

Fine-tuning Hyper-parameters (ImageNet, ViT-L16)

Defense Hyper-parameter Range For ℓ∞ For ℓ2

AT(AWP) δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
AT(SWA) α - 0.995 0.995
AT(S2O) α - 0.1 0.1
AT(TrH) λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘linear’
γ - 0.0001 0.0001

TRADES(AWP), λt=6 δawp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
TRADES(SWA), λt=6 α - 0.995 0.995
TRADES(S2O), λt=6 α - 0.3 0.3
TRADES(TrH), λt=6 λ {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.00005

λ schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
γ - 0.0001 0.0001

Table D.4: Hyper-parameters used in each defense and the values used to reproduce ImageNet results in
Table. 4.1.

• base: we use λt = 6 for TRADES training and λt is consistent across all experiments.

• SWA: we use α = 0.995 so that θavg ← 0.995 ∗ θavg + 0.005 ∗ θ(t+1) as this value is used in the

literature (Gowal et al., 2021). Therefore, there is no tuning in SWA.

• S2O: The only parameter that requires tuning is the penalty α of the second-order statistic in Eq 4.2.

In the authors’ implementation, we find 1− α is used to balance the regularization with the robust

loss (AT or TRADES). These hyper-parameters are hard-coded in the latest commit f2d037b1 so we

directly use their choice of hyper-parameters. Namely, for AT loss, the finally loss in S2O training is

set to

0.9 ∗ AT_loss + 0.1 ∗ S2O_loss

and for TRADES training the final loss is

0.7 ∗ 1
m

m

∑
i

CE((xi, yi), Fθ) + 0.3 ∗ S2O_loss +
λt

m

m

∑
i

max
||ϵi ||p≤δ

KL((xi, ϵi), Fθ).

1https://github.com/Alexkael/S2O/tree/f2d037b9611f7322783411825099251f7978f54e

https://github.com/Alexkael/S2O/tree/f2d037b9611f7322783411825099251f7978f54e
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• AWP: The two hyper-parameters in AWP that requires tuning are ψ and δawp, where ψ is the function

to measure the noise added to the weights and δawp is the noise budget. We follow the choice made

by Wu et al. (Wu et al., 2020) to choose ψ as the layer-wise ℓ2 norm function so that the noise added

to the weights in each layer should no greater than the ℓ2 norm of the weights multiplied by δawp.

Namely, suppose that ξ(i) is the noise added to a weight matrix W(i) at layer i, then we project ξ(i)

such that
||ξ(i) + W(i)||2
||W(i)||2

≤ δawp.

For the choice of δawp, we sweep δawp over the interval {0.0001, 0.0005, 0.001, 0.005, 0.01}.

• TrH: The two hyper-parameters in TrH that requires tuning are the ℓ2 weight penalty γ and the TrH

penalty λ. For γ, we find 0.001 as a reasonable choice for CIFAR-10/100 and 0.0001 as a reasonable

choice for ImageNet. For λ, we sweep the interval {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01}.

Furthermore, we also consider three types of schedulers: ‘constant’, ‘linear’, ‘multistep(0.1-0.5:0.1)’

for λ scheduling. Intuitively, a strong TrH regularization at the very beginning may lead the model

to a flat highland instead of a flat minimum where we get a degenerated model. Ramping up λ

to the chosen value allows the model to focus more on accuracy and robustness at the early stage.

In practice, we find that CIFAR10/100 is not sensitive to the choice of the λ schedulers; however,

ImageNet favors ‘linear’ or ‘multistep’ schedulers over the ’constant’ λ.

– ‘constant’. No λ scheduling.

– ‘linear’. We ramp up λ from 0 to the chosen value from iteration 1 to the end.

– ‘multistep(0.1-0.5:0.1)’. We use 0.01 * λ before finishing 10% of the total iterations. We use 0.1 * λ

after finishing 10% and before 50% of the total iterations. After finishing 50% of iterations, we

use λ.

D.4 Additional Results

We include the results on CIFAR-10/100 with ViT-B16 in Table D.5 and ImageNet with Hybrid-L16 in

Table D.6 of the appendix. These additional results are consistent with what we have found in Section ??

of the paper: in CIFAR-10/100, TrH is consistently among the top or silver results; in ImageNet, TrH has

significantly advantages over the other baseline methods.

D.5 ViT Architecture

We describe the architectures of Vision Transformers used in our experiments in Section 4.5.
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ℓ∞(ϵ = 8/255) ViT-B16
SE= ±0.5% CIFAR-10 CIFAR-100
Defense Clean(%) ERA(%) Clean (%) ERA(%)

AT(base) 87.5 60.3 60.0 30.4
AT(SWA) 86.9 60.4 64.1 33.7
AT(S2O) 86.8 60.4 63.2 31.5
AT(AWP) 87.3 61.3 61.5 32.2
AT(TrH) 88.4 61.5 65.0 33.0

TRADES(base) 85.4 60.8 58.6 30.5
TRADES(SWA) 85.6 60.6 62.7 33.0
TRADES(S2O) 85.9 61.1 63.5 31.5
TRADES(AWP) 84.7 60.1 60.8 32.2
TRADES(TrH) 85.8 61.1 63.8 33.0

Table D.5: Additional results for CIFAR-10/100 using ViT-B16. Clean: % of Top-1 correct predictions.
ERA: % of Top-1 correct predictions under AutoAttack. A max Standard Error (SE) Stark & University of
California (2005) =

√
0.5 ∗ (1− 0.5)/n (n as the number of test examples) is computed for each dataset.

The best results appear in bold. Underlined results are those that fall within the SE range of the result and
are regarded roughly equal to the best result.

ImageNet Hybrid-L16
SE= ±0.2% ℓ∞(ϵ = 4/255) ℓ2(ϵ = 3.0)
Defense Clean(%) ERA(%) Clean (%) ERA(%)

AT(base) 72.6 40.7 72.2 40.6
AT(SWA) 72.7 40.4 72.7 40.5
AT(S2O) 72.8 43.6 72.3 40.9
AT(AWP) 67.7 39.4 67.9 40.3
AT(TrH) 75.0 46.2 74.4 45.9

TRADES(base) 79.5 37.6 78.0 38.6
TRADES(SWA) 72.9 40.9 71.3 40.8
TRADES(S2O) 73.8 41.3 72.2 41.2
TRADES(AWP) 66.4 38.8 65.3 40.9
TRADES(TrH) 75.9 45.7 73.3 45.6

Table D.6: Addtional Results for ImageNet using Hybird-L16. Clean: % of Top-1 correct predictions. ERA: %
of Top-1 correct predictions under AutoAttack. A max Standard Error (SE) Stark & University of California
(2005) =

√
0.5 ∗ (1− 0.5)/n (n as the number of test examples) is computed for each dataset. The best

results appear in bold. Underlined results are those that fall within the SE range of the result and are
regarded roughly equal to the best result.

• ViT-B16 includes 12 transformer layers with hidden size 768, MLP layer size 3072 and 12 heads in the

multi-head attention.

• ViT-L16 includes 24 transformer layers with hidden size 1024, MLP layer size 4096 and 16 heads in

the multi-head attention.

• Hybird-L16 is a hybrid model of a ResNet-50 and a ViT-L16 model. The patches fed into ViT are feature
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representations encoded by a ResNet-50 and projected to the Transformer dimensions (Dosovitskiy

et al., 2021). Dissimilar to a standard ResNet-50 feature encoder, Dosovitskiy et al. (Dosovitskiy

et al., 2021) replaced Batch Normalization with Group Normalization (Wu & He, 2019) and use

standardized Convolution (Qiao et al., 2019). Moreover, Dosovitskiy et al. (Dosovitskiy et al., 2021)

removed stage 4, placed the same number of layers in stage 3 (keeping the total number of layers),

and took the output of this extended stage 3 as the input of ViT.

The pretrained ViT-B16 and ViT-L16 checkpoints use patch size 16× 16. However, since the images in

CIFAR10/100 are of size 32× 32, there will be only 4 patches when using the original patch size. Therefore,

we downsample the kernel of the first convolution to produce image patches of 4× 4. Among different

ways of downsampling we find the cubic interpolation gives the best results, which is the one chosen in

pre-tuning as discussed in Appendix D.2. Indeed, Mahmood et al. (Mahmood et al., 2021) empirically finds

that such down-sampling provides better results for CIFAR10 images. Furthermore, in generating patches,

we also use a stride of 2 instead of 4, because we find using overlapped patches increases the sequence

length and results in better performance.
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